Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Crystallization Efforts For An Engineered Nickel-Binding Protein, Gold-Bovine Serum Albumin Nanoclusters, And An Artificial De Novo Tetramer Hydrogenase Mimic, Skyler Crane May 2020

Crystallization Efforts For An Engineered Nickel-Binding Protein, Gold-Bovine Serum Albumin Nanoclusters, And An Artificial De Novo Tetramer Hydrogenase Mimic, Skyler Crane

Honors Theses

Protein crystallization is fundamental to modern research efforts given its ability to determine a protein’s structure as well as the interactions that structure allows and relies upon. This process, though lacking direct application, provides necessary information for subsequent research efforts for which applicationsmay be explored. As such, efforts were taken to crystallize nickel-binding protein (NBP) reengineered from Copper Storage Protein 1 (Csp1) in its apo and metal bound form, Bovine Serum Albumin (BSA) in its apo and gold bound form (Au-BSA), and an artificial de novo tetramer hydrogenase mimic peptide to better inform future research actions for these respective molecules. …


Investigation Of Potentially Catalytic Residues Of Uba5 Through Mutagenesis, Purification, And Structural Characterization, Grant Bradley May 2020

Investigation Of Potentially Catalytic Residues Of Uba5 Through Mutagenesis, Purification, And Structural Characterization, Grant Bradley

Senior Honors Projects, 2020-current

Ubiquitin-fold modifier 1 (Ufm1) is a member of the Ubiquitin (Ub) family of proteins whose primary function is degradation of proteins through a sequential mechanism of chemical reactions. Though Ufm1’s specific roles are largely unknown, this family of proteins has shown to play a part in a wide variety of processes, including regulation of the cell cycle1, secretory functions of cells2,3, and blood clotting4. Ufm1’s mechanism of action proceeds with the aid of three enzymes: an E1, E2, and E3. Uba5 is the E1 activating enzyme that is specific to Ufm1, and its mechanism of …


Cloning And Expression Of Hydra Innexin 2, A Gap Junction Protein Required For Coordinated Contraction Of The Body Column, Ashley O'Brien May 2020

Cloning And Expression Of Hydra Innexin 2, A Gap Junction Protein Required For Coordinated Contraction Of The Body Column, Ashley O'Brien

Biology Theses

In invertebrates gap junctions are formed by the innexin family of proteins. Remarkably, the genome of Hydra magnipapillata contains 17 innexin genes. This study focused on Hydra innexin-2 (h-Inx2) which is expressed in nerve cells and plays a role in contraction of the body column. The gene sequence of H-Inx2 was obtained from the National Center for Biotechnology Information (NCBI), the gene was synthesized externally and transferred to a vector suitable for expression in Xenopus oocytes (pcDNA3.1 CT-GFP TOPO). The TOPO CT-GFP vector includes a priming site for RNA polymerase which allows in vitro preparation of RNA. Another advantage is …


Characterization Of Avidin And Case9 Single Protein Molecules By A Solid-State Nanopore Device, Haopeng Li May 2020

Characterization Of Avidin And Case9 Single Protein Molecules By A Solid-State Nanopore Device, Haopeng Li

Graduate Theses and Dissertations

The shape and charge of a protein play significant roles in protein dynamics in the biological system of humans and animals. Characterizing and quantifying the shape and charge of a protein at the single-molecule level remains a challenge. Solid-state nanopores made of silicon nitride (SiNx) have emerged as novel platforms for biosensing such as diagnostics for single-molecule detection and DNA sequencing. SSN detection is based on measuring the variations in ionic conductance as charged biomolecules translocate through nanometer-sized channels driven by an external voltage applied across the membrane. In this paper, we observe the translocation of asymmetric cylindrical structure CRISPR-Cas9 …


A Proteomic Analysis Of Corydoras Sterbai Secretions And Tissues, Erik Powell Wictor Jan 2020

A Proteomic Analysis Of Corydoras Sterbai Secretions And Tissues, Erik Powell Wictor

University of the Pacific Theses and Dissertations

Defensive mechanisms vary widely in the animal kingdom ranging from physical defenses like spines to chemical defenses such as toxins. Toxins in these secretions and tissues can fluctuate from enzymes to lipids to uncharacterized chemicals. Next generation -omics technology and mass spectrometry are extremely important in analyzing these samples because of their ability to distinguish minute amounts of toxic substance within a complicated sample. The goal of this experiment was to look at secretions and tissues from Corydoras sterbai. All samples in this study were proteolyzed using a mixture of Trypsin and Lys-C, fractionated, and run through nanoLC-MS/MS analysis using …