Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Positron Emission Tomography In Oncology And Environmental Science, Samantha Delaney Jun 2024

Positron Emission Tomography In Oncology And Environmental Science, Samantha Delaney

Dissertations, Theses, and Capstone Projects

The last half century has played witness to the onset of molecular imaging for the clinical assessment of physiological targets. While several medical imaging modalities allow for the visualization of the functional and anatomical properties of humans and living systems, few offer accurate quantitation and the ability to detect biochemical processes with low-administered drug mass doses. This limits how physicians and scientists may diagnose and treat medical issues, such as cancer, disease, and foreign agents.

A promising alternative to extant invasive procedures and suboptimal imaging modalities to assess the nature of a biological environment is the use of positron emission …


Integrating In Vitro And In Silico Approaches To Gain Insight Into The Mechanism Of Amyloid Fibrillogenesis, Marvin M. Bilog Jun 2024

Integrating In Vitro And In Silico Approaches To Gain Insight Into The Mechanism Of Amyloid Fibrillogenesis, Marvin M. Bilog

Dissertations, Theses, and Capstone Projects

Amyloid fibril formation, the hallmark of numerous amyloid-related diseases, has been the subject of a vast number of scientific studies due to its pathological implications. Since the fibrillization process exhibits a certain level of intricacy, its investigation requires a multidisciplinary approach that integrates both experimental and computational methods. In vitro techniques involve biophysical assays and imaging tools for characterizing the structural and kinetic aspects of amyloid fibril formation. In parallel, in silico techniques offer programs for predicting atomistic details and behaviors of amyloidogenic proteins and peptides at the nanoscale level. Serum amyloid A (SAA), human islet amyloid polypeptide (hIAPP), and …


Protein-Protein Interactions In Cell Cycle Proteins: An In Silico Investigation Of Two Important Players, Andriele Eichner Feb 2024

Protein-Protein Interactions In Cell Cycle Proteins: An In Silico Investigation Of Two Important Players, Andriele Eichner

Dissertations, Theses, and Capstone Projects

The examination of the cell cycle carries significant implications for the biology, health, and overall existence of all living things. These implications span from the development and growth of these organisms to the aging process and cancer, as well as the potential of stem cell therapies to repair diseases and injuries. Numerous proteins of the cell cycle are essential for cellular division and proliferation and are widely conserved over the course of evolution. In this work, we aimed to investigate the molecular processes of protein-protein interactions in cell cycle proteins, centering on two key players: Cdc6 in budding yeast and …


Comparative Animal Mucomics, Antonio R. Cerullo Feb 2024

Comparative Animal Mucomics, Antonio R. Cerullo

Dissertations, Theses, and Capstone Projects

Mucus is one of Nature’s most abundant and versatile biomaterials. These secretions are present in all animals, from the lowly garden snail to the great blue whale, and fulfill a multitude of functions, acting as antimicrobial barriers, moisturizers, adhesive glues, surface lubricants, and mineralizing agents. Despite their importance, very little is known about mucus compositions or properties. The largest challenge precluding the greater understanding of mucus function is its complexity; a single mucus contains complex mixtures of proteins, glycans, and ions that all have important roles in function. Therefore, understanding mucus function necessitates analysis that compares different mucus from one …


Rational Design Of Peptide-Based Materials Informed By Multiscale Molecular Dynamics Simulations, Dhwanit Rahul Dave Feb 2024

Rational Design Of Peptide-Based Materials Informed By Multiscale Molecular Dynamics Simulations, Dhwanit Rahul Dave

Dissertations, Theses, and Capstone Projects

The challenge of establishing a sustainable and circular economy for materials in medicine and technology necessitates bioinspired design. Nature's intricate machinery, forged through evolution, relies on a finite set of biomolecular building blocks with through-bond and through-space interactions. Repurposing these molecular building blocks requires a seamless integration of computational modeling, design, and experimental validation. The tools and concepts developed in this thesis pioneer new directions in peptide-materials design, grounded in fundamental principles of physical chemistry. We present a synergistic approach that integrates experimental designs and computational methods, specifically molecular dynamics simulations, to gain in-depth molecular insights crucial for advancing the …