Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Life Sciences

Role Of Hnrnp A1 In The Regulation Of Hdm2 Gene Expression, Heriberto Moran Sep 2016

Role Of Hnrnp A1 In The Regulation Of Hdm2 Gene Expression, Heriberto Moran

Dissertations, Theses, and Capstone Projects

hnRNP A1 is one of the most abundant and ubiquitously expressed member of hnRNPs (Heterogenous Nuclear Ribonucleoproteins) family of proteins that play multiple roles in gene expression by participating in major steps in the processing of nascent RNA transcripts 1. It is involved in mRNA biogenesis mechanisms such as the transcription, splicing, stability, export and translation of cellular and viral transcripts. The functions of hnRNP A1 extend to the processing of microRNAs, telomere maintenance and DNA repair 1. Our previous studies have shown that hnRNPA1 had reduced protein level and increased cytoplasmic accumulation in senescent human diploid fibroblasts 2,10. Our …


Specific Binding Affinity Of The Non-Catalytic Domain Of Eukaryotic Like Type Ib Topoisomerase Of Vaccinia Virus, Benjamin R. Reed Sep 2016

Specific Binding Affinity Of The Non-Catalytic Domain Of Eukaryotic Like Type Ib Topoisomerase Of Vaccinia Virus, Benjamin R. Reed

Dissertations, Theses, and Capstone Projects

Topoisomerases are ubiquitous proteins that alter supercoiling in double stranded DNA (dsDNA) during transcription and replication and. vaccinia and the closely related poxvirus variola virus, at 314 amino acids in length, encode the smallest of the type I topoisomerases(TopIB). TopIB is a two domain protein that recognizes the sequence 5’-T/CCCTT, cleaves at the 3’-end and relaxes supercoiling through rotation. The C-terminal domain (CTD) alone contains the catalytic activity and specificity. Deletion of the N-terminal domain results in a greatly reduced rate of relaxation and rapid dissociation. Biochemical data suggests that the N-terminal domain (NTD) is important for pre-cleavage binding and …


Molecular Analysis Of Ftsz-Ring Assembly In E. Coli Cytokinesis, Kuo-Hsiang Huang Sep 2016

Molecular Analysis Of Ftsz-Ring Assembly In E. Coli Cytokinesis, Kuo-Hsiang Huang

Dissertations, Theses, and Capstone Projects

An essential first step in bacterial division is the assembly of a cytokinetic ring (Z-ring) formed by the tubulin-like FtsZ at midcell. The highly conserved core domain of FtsZ has been reported to mediate assembly of FtsZ polymers in vivo and in vitro. Species-specific differences in the FtsZ C-terminal domain such as the FtsZ CTV region and interactions with several modulatory proteins such as ZapC and ZapD, restricted to certain bacterial classes, also serve as key determinants of FtsZ protofilament bundling. Here, we characterize (i) the roles of the FtsZ CTV region in mediating both longitudinal and lateral interactions …


Tuning Into Toxins And Channels: The Characterizations Of Tv1 And A Human Cardiac Sodium Channel Voltage-Sensor Domain, Mohammed H. Bhuiyan Sep 2016

Tuning Into Toxins And Channels: The Characterizations Of Tv1 And A Human Cardiac Sodium Channel Voltage-Sensor Domain, Mohammed H. Bhuiyan

Dissertations, Theses, and Capstone Projects

In nature, peptide toxins are an abundant resource, produced both by marine and terrestrial organisms. A major target of these peptide toxins is the group of the highly important voltage-gated ion channels. Due to their high specificity and affinity, peptide toxins have been used for over a decade in discovery and characterization of voltage-gated ion channels. Although peptide toxins have been extensively characterized structurally, the structural characterization of eukaryotic voltage-gated sodium channels has seen much less progress, due to their large size and high hydrophobicity. Voltage-gated sodium channels play crucial roles in many physiological processes, and when these processes are …


Therapeutic Targets For Alzheimer's Disease: Insights From In Vitro And In Vivo Models Of Inflammation, Magdalena J. Kiprowska Sep 2016

Therapeutic Targets For Alzheimer's Disease: Insights From In Vitro And In Vivo Models Of Inflammation, Magdalena J. Kiprowska

Dissertations, Theses, and Capstone Projects

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive neuronal loss that over the years spreads from the hippocampus to the neural cortex and impairs memory and cognitive functions. At the cellular level AD is linked to the presence of β-amyloid plaques and neurofibrillary tangles but despite decades of research little is known about their contribution to neurodegeneration and whether they are a cause or rather a result of the disease. It is well established that proteasome activity is impaired in AD brains and some studies suggest that this could be one of the initial factors leading to development …


Circular Oligodeoxynucleotides (Coligos) As Chemically Synthesized, Promoter-Independent Small Rna Expression Vectors, Lodoe Lama Jun 2016

Circular Oligodeoxynucleotides (Coligos) As Chemically Synthesized, Promoter-Independent Small Rna Expression Vectors, Lodoe Lama

Dissertations, Theses, and Capstone Projects

Small RNAs (sRNA) such as microRNA (miRNA), small interfering RNA (siRNA), and other types of RNA have been found to play many important biological roles in regulation of different cellular process leading to their possible use as therapeutics. However, one of the biggest hurdles in exploiting these sRNAs in therapeutics has been the difficulty in delivering them safely and stably into human tissues. Many delivery approaches have been undertaken to deliver these sRNA, albeit with many shortcomings in terms of cost, stability, and side effects, necessitating the need for alternative approaches. We are exploring an entirely different approach for conveying …


Interaction Of Spliceosomal U2 Snrnp Protein P14 With Its Branch Site Rna Target, William Perea Vargas Jun 2016

Interaction Of Spliceosomal U2 Snrnp Protein P14 With Its Branch Site Rna Target, William Perea Vargas

Dissertations, Theses, and Capstone Projects

Newly transcribed precursor messenger RNA (pre-mRNA) molecules contain coding sequences (exons) interspersed with non-coding intervening sequences (introns). These introns must be removed in order to generate a continuous coding sequence prior to translation of the message into protein. The mechanism through which these introns are removed is known as pre-mRNA splicing, a two-step reaction catalyzed be a large macromolecular machine, the spliceosome, located in the nucleus of eukaryotic cells. The spliceosome is a protein-directed ribozyme composed of small nuclear RNAs (snRNA) and hundreds of proteins that assemble in a very dynamic process. One of these snRNAs, the U2 snRNA, is …


The Interaction Between Eukaryotic Translation Initiation Factor Eif4g And 3’ Cap Independent Translation Element Of Barley Yellow Dwarf Virus Is Affected By Multiple Initiation Factors, Pei Zhao Feb 2016

The Interaction Between Eukaryotic Translation Initiation Factor Eif4g And 3’ Cap Independent Translation Element Of Barley Yellow Dwarf Virus Is Affected By Multiple Initiation Factors, Pei Zhao

Dissertations, Theses, and Capstone Projects

Barley Yellow Dwarf Virus (BYDV) lacks a 5’ (7-methyl guanosine) cap as well as a 3’poly A tail. Like many plant viruses, BYDV contains a cap independent translation element (CITE) in the 3’ untranslated region of the viral mRNA. BTE (Barley Yellow Dwarf Virus like cap-independent translation element) is one of the well characterized CITEs. BTE mediated translation primarily depends on eukaryotic initiation factor eIF4G. BTE binds to eIF4G; however, the details of BTE initiated translation are still unclear. Three eIF4G deletion mutants with different domain organization were used to investigate BTE interaction with eIF4G: eIF4G601-1196 is the eIF4G fragment …


Chamber-Specific Patterns Of Epicardium Formation In Zebrafish, Sana Khan Feb 2016

Chamber-Specific Patterns Of Epicardium Formation In Zebrafish, Sana Khan

Dissertations, Theses, and Capstone Projects

The outer cardiac layer, the epicardium, coordinates the final steps of vertebrate heart development. This cardiac tissue arises from cells in the proepicardial organ (PEO) that forms around the base of the inflow tract. Its general location is conserved across species despite morphological differences. Cellular mechanisms of migration differ across species. Three strategies of PEO migration are described: 1) The floating cyst model - PEO cells released into the pericardial cavity are directed by fluid movements to migrate onto the myocardium; 2) Villi transfer - cardiac contractions may mediate multicellular PEO villi contact to the myocardium; and 3) Tissue bridge-mediated …


The Evolution Of The Viral Rna Sensor Oas1 In Old World Monkeys And Cetartiodactyls, Ian Fish Feb 2016

The Evolution Of The Viral Rna Sensor Oas1 In Old World Monkeys And Cetartiodactyls, Ian Fish

Dissertations, Theses, and Capstone Projects

Animals produce an array of sensors patrolling the intracellular environment poised to detect and respond to viral infection. The oligoadenylate synthetase family of enzymes comprises a crucial part of this innate immune response, directly signaling endonuclease activity responsible for inhibiting viral replication. Oligoadenylate synthetase 1 plays a vital role in animal susceptibility to pathogens including flaviviruses such as dengue, West Nile, and hepatitis c virus. This thesis includes a population level analysis of OAS1 diversity within macaque and baboon species followed by a broader survey of the gene in nineteen Old World monkeys. My research found that at the species …


Messenger Rna Transport And Translation Regulated By The 3' Utrs Of Dendritic Mrnas And Abnormal Alternative Splicing Of Neuroligin1 In The Fmr1 Ko Mouse Hippocampus, Tianhui Zhu Feb 2016

Messenger Rna Transport And Translation Regulated By The 3' Utrs Of Dendritic Mrnas And Abnormal Alternative Splicing Of Neuroligin1 In The Fmr1 Ko Mouse Hippocampus, Tianhui Zhu

Dissertations, Theses, and Capstone Projects

Fragile X Syndrome (FXS) is one of the most commonly inherited mental retardations. It is caused by the loss of functional fragile X mental retardation protein (FMRP). Loss of functional FMRP is the most widespread single-gene cause of autism. The most prominent phenotype of FXS patients is an IQ ranging from 20 to 70. FMRP is an RNA binding protein, widely expressed in almost all tissues and highly expressed in brain. As a RNA binding protein, 85-90 % of FMRP in the brain is associated with polyribosomes. Approximately 4 % of total mRNA is associated with FMRP, which functions in …