Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Life Sciences

Generating High-Order Optical And Spin Harmonics From Ferromagnetic Monolayers, G.P. Zhang, M.S. Si, M. Murakami, Y.H. Bai, Thomas George Dec 2018

Generating High-Order Optical And Spin Harmonics From Ferromagnetic Monolayers, G.P. Zhang, M.S. Si, M. Murakami, Y.H. Bai, Thomas George

Chemistry & Biochemistry Faculty Works

High-order harmonic generation (HHG) in solids has entered a new phase of intensive research, with envisioned band-structure mapping on an ultrashort time scale. This partly benefits from a flurry of new HHG materials discovered, but so far has missed an important group. HHG in magnetic materials should have profound impact on future magnetic storage technology advances. Here we introduce and demonstrate HHG in ferromagnetic monolayers. We find that HHG carries spin information and sensitively depends on the relativistic spin–orbit coupling; and if they are dispersed into the crystal momentum k space, harmonics originating from real transitions can be k-resolved and …


Puf Proteins: Regulation Of Condition-Specific Mrna Decay And Contributions To Ribosome Biogenesis In Yeast, Anthony Fischer Nov 2018

Puf Proteins: Regulation Of Condition-Specific Mrna Decay And Contributions To Ribosome Biogenesis In Yeast, Anthony Fischer

Dissertations

Regulation of protein expression is critical to organism survival. Multiple disease states arise from aberrant accumulation/aggregation of proteins or reduced production of key enzymes. Cells have many ways to manipulate protein levels, including transcription factors, chromatin modification, modification of messenger RNA (mRNA), and manipulation of proteolytic protein decay. Cells can indirectly control protein volume by controlling mRNA lifespan, which is directly correlated with protein output. Often, sequence-specific elements in mRNA contribute to this lifespan. The Puf family of RNA-binding proteins is ubiquitous throughout eukarya, and plays important cellular and developmental roles through mRNA lifespan regulation. Puf proteins contain a C-terminal …


Multiple Puf Proteins Regulate The Stability Of Ribosome Biogenesis Transcripts, Anthony Fischer, Wendy Olivas Sep 2018

Multiple Puf Proteins Regulate The Stability Of Ribosome Biogenesis Transcripts, Anthony Fischer, Wendy Olivas

Biology Department Faculty Works

Cells must make careful use of the resources available to them. A key area of cellular regulation involves the biogenesis of ribosomes. Transcriptional regulation of ribosome biogenesis factor genes through alterations in histone acetylation has been well studied. This work identifies a post-transcriptional mechanism of ribosome biogenesis regulation by Puf protein control of mRNA stability. Puf proteins are eukaryotic mRNA binding proteins that play regulatory roles in mRNA degradation and translation via association with specific conserved elements in the 3ʹ untranslated region (UTR) of target mRNAs and with degradation and translation factors. We demonstrate that several ribosome biogenesis factor mRNAs …


Conjugation Of Nanomaterials And Nematic Liquid Crystals For Futuristic Applications And Biosensors, Thomas George, Amit Choudhary, Guoqiang Li Jul 2018

Conjugation Of Nanomaterials And Nematic Liquid Crystals For Futuristic Applications And Biosensors, Thomas George, Amit Choudhary, Guoqiang Li

Chemistry & Biochemistry Faculty Works

The established role of nematic liquid crystals (NLCs) in the recent rapid development of displays has motivated researchers to modulate the electro-optical properties of LCs. Furthermore, adding nanomaterials into NLCs has led to enhancements of the properties of NLCs, like reduced threshold of the operating voltage, variation in pretilt angle, reduced switching time, etc. These enhanced properties, due to interfacial dynamics, are enabling wider applications of NLCs and nanomaterials. The recent literature of nanomaterial-doped NLCs is rich with various kinds of nanomaterials in a variety of NLCs. The light has been focused on the most widely used and studied gold …


Transcriptomics Of Learning, Pablo Iturralde Jul 2018

Transcriptomics Of Learning, Pablo Iturralde

Theses

Learning is a basic and important component of behavior yet we have very little empirical information about the interaction between mechanisms of learning and evolution. In our work, we are testing hypotheses about the neurogenetic mechanisms through which animal learning abilities evolve. We are able to test this directly by using experimentally evolved populations of flies, which differ in learning ability. These populations were previously evolved within the lab by creating worlds with different patterns of change following theoretically predicted effects on which enhanced learning will evolve. How has evolution acted to modulate genes and gene expression in the brain …


Aβ42 Protofibrils Interact With, And Are Trafficked Through, Microglial-Derived Microvesicles, Lisa Gouwens, Mudar Ismail, Victoria Rogers, Nathan Zeller, Evan Garrad, Fatima Amtashar, Nyasha Makoni, David Osborn, Michael Nichols Jun 2018

Aβ42 Protofibrils Interact With, And Are Trafficked Through, Microglial-Derived Microvesicles, Lisa Gouwens, Mudar Ismail, Victoria Rogers, Nathan Zeller, Evan Garrad, Fatima Amtashar, Nyasha Makoni, David Osborn, Michael Nichols

Chemistry & Biochemistry Faculty Works

Microvesicles (MVs) and exosomes comprise a class of cell-secreted particles termed extracellular vesicles (EVs). These cargo-holding vesicles mediate cell-to-cell communication and have recently been implicated in neurodegenerative diseases such as Alzheimer’s disease (AD). The two types of EVs are distinguished by the mechanism of cell release and their size, with the smaller exosomes and the larger MVs ranging from 30 to 100 nm and 100 nm to 1 μm in diameter, respectively. MV numbers are increased in AD and appear to interact with amyloid-β peptide (Aβ), the primary protein component of the neuritic plaques in the AD brain. Because microglial …


Roles Of Phospholipases And Ribosomal S6 Kinase In Lipid Remodeling And Growth In Arabidopsis Response To Phosphate Deprivation, Yuan Su Apr 2018

Roles Of Phospholipases And Ribosomal S6 Kinase In Lipid Remodeling And Growth In Arabidopsis Response To Phosphate Deprivation, Yuan Su

Dissertations

Phosphate (Pi) is one of three macronutrients for plants, which is vital for plant growth and development. Understanding the mechanism by which plants respond and adapt to Pi deficiency not only unveils functions of genes and pathways involved, but also provides potential tools to manipulate crops to better stand Pi stress in low Pi-containing lands. One of the significant metabolic changes in plants under Pi starvation is the membrane lipid remodeling that converts Pi-containing lipids such as phospholipids to Pi-free lipids, such as glycolipids. To elucidate the metabolism and regulation of lipid remodeling, this dissertation characterizes the role of two …


Dna Binding Kinetics Of Large Antiviral Hairpin Polyamides, Jacquelyn Niederschulte Apr 2018

Dna Binding Kinetics Of Large Antiviral Hairpin Polyamides, Jacquelyn Niederschulte

Dissertations

While vaccines exist for the some of the most problematic strains of human papillomavirus (HPV), a double stranded DNA virus, there is currently no cure. HPV remains one of the most commonly sexually transmitted infections and is responsible for virtually all cervical cancers and genital warts. Natural products Distamycin A and netropsin have inspired the hairpin Nmethylpyrrole (Py)/N-methylimidazole (Im) polyamides (PAs) studied here. The larger hairpin PAs, designed to bind to sites of 10 or more DNA bp, have been shown to be effective antivirals against oncogenic HPV strains 16, 18, and 31, while smaller hairpin PAs are not. Despite …


Shaping Light In Backward-Wave Nonlinear Hyperbolic Metamaterials, Thomas George, Alexander Popov, Sergey Myslivets, Vitaly Slabko, Victor Tkachenko Apr 2018

Shaping Light In Backward-Wave Nonlinear Hyperbolic Metamaterials, Thomas George, Alexander Popov, Sergey Myslivets, Vitaly Slabko, Victor Tkachenko

Chemistry & Biochemistry Faculty Works

Backward electromagnetic waves are extraordinary waves with contra-directed phase velocity and energy flux. Unusual properties of the coherent nonlinear optical coupling of the phase-matched ordinary and backward electromagnetic waves with contra-directed energy fluxes are described that enable greatly-enhanced frequency and propagation direction conversion, parametrical amplification, as well as control of shape of the light pulses. Extraordinary transient processes that emerge in such metamaterials in pulsed regimes are described. The results of the numerical simulation of particular plasmonic metamaterials with hyperbolic dispersion are presented, which prove the possibility to match phases of such coupled guided ordinary and backward electromagnetic waves. Particular …


Thermodynamics In Large Hairpin Polyamide-Dna Interactions, Yang Song Mar 2018

Thermodynamics In Large Hairpin Polyamide-Dna Interactions, Yang Song

Dissertations

Human papillomavirus (HPV) is a common sexually transmitted virus responsible for cervical cancers, and its infection is currently incurable. Only a few vaccines against high-risk HPV strains are available. Hairpin polyamides (PAs) in different sizes (8-20 units long) bind DNA in different lengths. They have been shown to have different anti-HPV activities in cell culture.

The interaction between PA and DNA is stabilized by two types of molecular forces: attractive and repulsive forces. Attractive forces include hydrogen bonds, van der Waals contacts and electrostatic forces between PA and DNA. Repulsive forces include the hydrophobic effect, which forces the PA out …