Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Life Sciences

Leishmania Major Survival In Selective Phlebotomus Papatasi Sand Fly Vector Requires A Specific Scg-Encoded Lipophosphoglycan Galactosylation Pattern, Deborah E. Dobson, Shaden Kamhawi, Phillip Lawyer, Salvatore J. Turco, Stephen M. Beverley, David L. Sacks Nov 2010

Leishmania Major Survival In Selective Phlebotomus Papatasi Sand Fly Vector Requires A Specific Scg-Encoded Lipophosphoglycan Galactosylation Pattern, Deborah E. Dobson, Shaden Kamhawi, Phillip Lawyer, Salvatore J. Turco, Stephen M. Beverley, David L. Sacks

Molecular and Cellular Biochemistry Faculty Publications

Phlebotomine sand flies that transmit the protozoan parasite Leishmania differ greatly in their ability to support different parasite species or strains in the laboratory: while some show considerable selectivity, others are more permissive. In "selective" sand flies, Leishmania binding and survival in the fly midgut typically depends upon the abundant promastigote surface adhesin lipophosphoglycan (LPG), which exhibits species- and strain-specific modifications of the dominant phosphoglycan (PG) repeat units. For the "selective" fly Phlebotomus papatasi PpapJ, side chain galactosyl-modifications (scGal) of PG repeats play key roles in parasite binding. We probed the specificity and properties of this scGal-LPG PAMP (Pathogen Associated …


Aminopeptidases Do Not Directly Degrade Tau Protein, K. Martin Chow, Hanjun Guan, Louis B. Hersh Nov 2010

Aminopeptidases Do Not Directly Degrade Tau Protein, K. Martin Chow, Hanjun Guan, Louis B. Hersh

Molecular and Cellular Biochemistry Faculty Publications

BACKGROUND: Tau hyperphosphorylation and aggregation to form intracellular neurofibrillar tangles is prevalent in a number of tauopathies. Thus there is current interest in the mechanisms involved in Tau clearance. It was recently reported that Tau can be degraded by an aminopeptidase known as the puromycin sensitive aminopeptidase (PSA). Until now PSA has been reported to only cleave peptides, with the largest reported substrates having 30-50 amino acids. We have studied this unique PSA cleavage reaction using a number of different PSA preparations.

RESULTS: An N-terminally His tagged-PSA was expressed and purified from Sf9 insect cells. Although this PSA preparation cleaved …


Retention And Loss Of Rna Interference Pathways In Trypanosomatid Protozoans, Lon-Fye Lye, Katherine Owens, Huafang Shi, Silvane M. F. Murta, Ana Carolina Vieira, Salvatore J. Turco, Christian Tschudi, Elisabetta Ullu, Stephen M. Beverley Oct 2010

Retention And Loss Of Rna Interference Pathways In Trypanosomatid Protozoans, Lon-Fye Lye, Katherine Owens, Huafang Shi, Silvane M. F. Murta, Ana Carolina Vieira, Salvatore J. Turco, Christian Tschudi, Elisabetta Ullu, Stephen M. Beverley

Molecular and Cellular Biochemistry Faculty Publications

RNA interference (RNAi) pathways are widespread in metaozoans but the genes required show variable occurrence or activity in eukaryotic microbes, including many pathogens. While some Leishmania lack RNAi activity and Argonaute or Dicer genes, we show that Leishmania braziliensis and other species within the Leishmania subgenus Viannia elaborate active RNAi machinery. Strong attenuation of expression from a variety of reporter and endogenous genes was seen. As expected, RNAi knockdowns of the sole Argonaute gene implicated this protein in RNAi. The potential for functional genetics was established by testing RNAi knockdown lines lacking the paraflagellar rod, a key component of the …


The Mir-15/107 Group Of Microrna Genes: Evolutionary Biology, Cellular Functions, And Roles In Human Diseases, John R. Finnerty, Wang-Xia Wang, Sébastien S. Hébert, Bernard R. Wilfred, Guogen Mao, Peter T. Nelson Sep 2010

The Mir-15/107 Group Of Microrna Genes: Evolutionary Biology, Cellular Functions, And Roles In Human Diseases, John R. Finnerty, Wang-Xia Wang, Sébastien S. Hébert, Bernard R. Wilfred, Guogen Mao, Peter T. Nelson

Pathology and Laboratory Medicine Faculty Publications

The miR-15/107 group of microRNA (miRNA) gene is increasingly appreciated to serve key functions in humans. These miRNAs regulate gene expression involved in cell division, metabolism, stress response, and angiogenesis in vertebrate species. The miR-15/107 group has also been implicated in human cancers, cardiovascular disease and neurodegenerative disease, including Alzheimer's disease. Here we provide an overview of the following: (1) the evolution of miR-15/107 group member genes; (2) the expression levels of miRNAs in mammalian tissues; (3) evidence for overlapping gene-regulatory functions by different miRNAs; (4) the normal biochemical pathways regulated by miR-15/107 group miRNAs; and (5) the roles played …


Entry And Fusion Of Emerging Paramyxoviruses, Rebecca Ellis Dutch Jun 2010

Entry And Fusion Of Emerging Paramyxoviruses, Rebecca Ellis Dutch

Molecular and Cellular Biochemistry Faculty Publications

Paramyxoviruses are a family of non-segmented RNA viruses that includes major human pathogens such as measles virus and respiratory syncytial virus (RSV) and significant animal viruses like rinderpest. In recent years, several new paramyxoviruses have been identified, further increasing the breadth and importance of this viral family. While many elements of the fusion and entry mechanisms of these recently identified pathogens are conserved, there are interesting differences, including variations in receptor binding, cell tropism, fusion (F) protein proteolytic activation, and triggering of membrane fusion. Thus, study of their entry mechanisms has highlighted the diversity of these critical events in the …


Efficient Activation Of Reconstructed Rat Embryos By Cyclin-Dependent Kinase Inhibitors, Robin L. Webb, Kirk A. Findlay, Michael A. Green, Tina L. Beckett, M. Paul Murphy Mar 2010

Efficient Activation Of Reconstructed Rat Embryos By Cyclin-Dependent Kinase Inhibitors, Robin L. Webb, Kirk A. Findlay, Michael A. Green, Tina L. Beckett, M. Paul Murphy

Molecular and Cellular Biochemistry Faculty Publications

Background

Over the last decade a number of species, from farm animals to rodents, have been cloned using somatic cell nuclear transfer technology (SCNT). This technique has the potential to revolutionize the way that genetically modified animals are made. In its current state, the process of SCNT is very inefficient (<5% success rate), with several technical and biological hurdles hindering development. Yet, SCNT provides investigators with powerful advantages over other approaches, such as allowing for prescreening for the desired level of transgene expression and eliminating the excess production of undesirable wild-type animals. The rat plays a significant role in biomedical research, but SCNT has been problematic for this species. In this study, we address one aspect of the problem by evaluating methods of activation in artificially constructed rat embryos.

Principal Findings

We demonstrate that treatment with a calcium ionophore (ionomycin) combined with a variety of cyclin-dependent kinase inhibitors is an effective way to activate rat embryos. This is in contrast to methods developed for the mouse embryo, which tolerates much less specific chemical treatments. Methods developed to activate …


A Monomeric Variant Of Insulin Degrading Enzyme (Ide) Loses Its Regulatory Properties, Eun Suk Song, David W. Rodgers, Louis B. Hersh Mar 2010

A Monomeric Variant Of Insulin Degrading Enzyme (Ide) Loses Its Regulatory Properties, Eun Suk Song, David W. Rodgers, Louis B. Hersh

Molecular and Cellular Biochemistry Faculty Publications

BACKGROUND: Insulin degrading enzyme (IDE) is a key enzyme in the metabolism of both insulin and amyloid beta peptides. IDE is unique in that it is subject to allosteric activation which is hypothesized to occur through an oligomeric structure.

METHODOLOGY/PRINCIPAL FINDINGS: IDE is known to exist as an equilibrium mixture of monomers, dimers, and higher oligomers, with the dimer being the predominant form. Based on the crystal structure of IDE we deleted the putative dimer interface in the C-terminal region, which resulted in a monomeric variant. Monomeric IDE retained enzymatic activity, however instead of the allosteric behavior seen with wild …


Biochemical Characterization Of Human Mismatch Recognition Proteins Mutsα And Mutsβ, Lei Tian Jan 2010

Biochemical Characterization Of Human Mismatch Recognition Proteins Mutsα And Mutsβ, Lei Tian

University of Kentucky Doctoral Dissertations

The integrity of an organism's genome depends on the fidelity of DNA replication and the efficiency of DNA repair. The DNA mismatch repair (MMR) system, which is highly conserved from prokaryotes to eukaryotes, plays an important role in maintaining genome stability by correcting base-base mismatches and insertion/deletion (ID) mispairs generated during DNA replication and other DNA transactions. Mismatch recognition is a critical step in MMR. Two mismatch recognition proteins, MutSα (MSH2-MSH6 heterodimer) and MutSβ (MSH2-MSH3 heterodimer), have been identified in eukaryotic cells. MutSα and MutSβ have partially overlapping functions, with MutSα recognizing primarily base-base mismatches and 1-2 nt ID mispairs …


Dissecting The Biosyntheses Of Gilvocarcins And Ravidomycins, Madan Kumar Kharel Jan 2010

Dissecting The Biosyntheses Of Gilvocarcins And Ravidomycins, Madan Kumar Kharel

University of Kentucky Doctoral Dissertations

Gilvocarcin V (GV) and ravidomycin (RMV) exhibit excellent antitumor activities in the presence of near-UV light at low concentration maintaining a low in vivo cytotoxicity. Although, the exact molecular mechanism for in vivo actions of these antibiotics has yet to be determined, a [2+2] cycloaddition reaction of the vinyl side chain with DNA thymidine residues in addition to the inhibition of topoisomerase II and DNAhistone H3 cross-linking are reported for the GV’s mechanism of action. Such activities have made these molecules interesting candidates for the biosynthetic investigation to generate analogues with improved activity/solubility. Previous biosynthetic studies have suggested that the …


Explorations In Homeoviscous Adaptation And Mass Spectral Analysis Of Membrane Lipids, Michael Douglas Timmons Jan 2010

Explorations In Homeoviscous Adaptation And Mass Spectral Analysis Of Membrane Lipids, Michael Douglas Timmons

University of Kentucky Doctoral Dissertations

The focus of this dissertation is centered on the mass spectral analysis of lipids and changes occurring in keeping with the concept of homeoviscous adaptation [1]. Homeoviscous adaptation is the process of modification of membrane lipids in response to environmental stimuli [1]. Dissertation investigations applied this concept to prokaryotic and eukaryotic organisms, and expanded the perception of environmental factors from exogenous organic solvents to intracellular environment.

The field of lipidomics deals with the analysis of phospholipid and fatty acid components of membranes the changes that occur due to environmental stimuli and their biological significance [2-6]. The high sensitivity of mass …


Analysis Of The Crmp Gene In Drosophila: Determining The Regulatory Role Of Crmp In Signaling And Behavior, Deanna Hardt Morris Jan 2010

Analysis Of The Crmp Gene In Drosophila: Determining The Regulatory Role Of Crmp In Signaling And Behavior, Deanna Hardt Morris

University of Kentucky Doctoral Dissertations

The mammalian genome encodes five collapsin response mediator protein (CRMP) isoforms. Cell culture studies have shown that the CRMPs mediate growth cone dynamics and neuron polarity through associations with a variety of signal transduction components and cytoskeletal elements. CRMP is also a member of a protein family including the presumably ancestral dihydropyrimidinase (DHP) protein that catalyzes the second step in pyrimidine degradation. In Drosophila, CRMP and DHP proteins are produced by alternatively spliced transcripts of the CRMP gene. The alternative protein forms have a 91% sequence identity, but unique expression patterns. CRMP is found exclusively in neuronal tissues and …


15N Solid-State Nmr Detection Of Flavin Perturbation By H-Bonding In Models And Enzyme Active Sites, Dongtao Cui Jan 2010

15N Solid-State Nmr Detection Of Flavin Perturbation By H-Bonding In Models And Enzyme Active Sites, Dongtao Cui

University of Kentucky Doctoral Dissertations

Massey and Hemmerich proposed that the different reactivities displayed by different flavoenzymes could be achieved as a result of dominance of different flavin ring resonance structures in different binding sites. Thus, the FMN cofactor would engage in different reactions when it had different electronic structures. To test this proposal and understand how different protein sites could produce different flavin electronic structures, we are developing solid-state NMR as a means of characterizing the electronic state of the flavin ring, via the 15N chemical shift tensors of the ring N atoms. These provide information on the frontier orbitals. We propose that …


In Vivo Oxidative Stress In Alzheimer Disease Brain And A Mouse Model Thereof: Effects Of Lipid Asymmetry And The Single Methionine Residue Of Amyloid-Β Peptide, Miranda Lu Bader Lange Jan 2010

In Vivo Oxidative Stress In Alzheimer Disease Brain And A Mouse Model Thereof: Effects Of Lipid Asymmetry And The Single Methionine Residue Of Amyloid-Β Peptide, Miranda Lu Bader Lange

University of Kentucky Doctoral Dissertations

Studies presented in this dissertation were conducted to gain more insight into the role of phospholipid asymmetry and amyloid-β (Aβ)-induced oxidative stress in brain of subjects with amnestic mild cognitive impairment (aMCI) and Alzheimer disease (AD). AD is a largely sporadic, age-associated neurodegenerative disorder clinically characterized by the vast, progressive loss of memory and cognition commonly in populations over the age of ~65 years, with the exception of those with familial AD, which develop AD symptoms as early as ~30 years-old. Neuropathologically, both AD and FAD can be characterized by synapse and neuronal cell loss in conjunction with accumulation of …