Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

University of Kentucky

Series

2018

Epigenetics

Articles 1 - 1 of 1

Full-Text Articles in Life Sciences

Selective Inhibition Of Ctcf Binding By Ias Directs Tet-Mediated Reprogramming Of 5-Hydroxymethylation Patterns In Ias-Transformed Cells, Matthew Rea, Tyler Gripshover, Yvonne N. Fondufe-Mittendorf Jan 2018

Selective Inhibition Of Ctcf Binding By Ias Directs Tet-Mediated Reprogramming Of 5-Hydroxymethylation Patterns In Ias-Transformed Cells, Matthew Rea, Tyler Gripshover, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

Methylation at cytosine (5mC) is a fundamental epigenetic DNA modification recently associated with iAs-mediated carcinogenesis. In contrast, the role of 5-hydroxymethylcytosine (5hmC), the oxidation product of 5mC in iAs-mediated carcinogenesis is unknown. Here we assess the hydroxymethylome in iAs-transformed cells, showing that dynamic modulation of hydroxymethylated DNA is associated with specific transcriptional networks. Moreover, this pathologic iAs-mediated carcinogenesis is characterized by a shift toward a higher hydroxymethylation pattern genome-wide. At specific promoters, hydroxymethylation correlated with increased gene expression. Furthermore, this increase in hydroxymethylation occurs concurrently with an upregulation of ten-eleven translocation (TET) enzymes that oxidize 5-methylcytosine (5mC) in DNA. To …