Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Amylin And Diabetic Cardiomyopathy – Amylin-Induced Sarcolemmal Ca2+ Leak Is Independent Of Diabetic Remodeling Of Myocardium, Miao Liu, Amanda Hoskins, Nirmal Verma, Donald M. Bers, Sanda Despa, Florin Despa May 2018

Amylin And Diabetic Cardiomyopathy – Amylin-Induced Sarcolemmal Ca2+ Leak Is Independent Of Diabetic Remodeling Of Myocardium, Miao Liu, Amanda Hoskins, Nirmal Verma, Donald M. Bers, Sanda Despa, Florin Despa

Pharmacology and Nutritional Sciences Faculty Publications

Amylin is a pancreatic β-cell hormone co-secreted with insulin, plays a role in normal glucose homeostasis, and forms amyloid in the pancreatic islets of individuals with type-2 diabetes. Aggregated amylin is also found in blood and extra-pancreatic tissues, including myocardium. Myocardial amylin accumulation is associated with myocyte Ca2+ dysregulation in diabetic rats expressing human amylin. Whether deposition of amylin in the heart is a consequence of or a contributor to diabetic cardiomyopathy remains unknown. We used amylin knockout (AKO) mice intravenously infused with either human amylin (i.e, the aggregated form) or non-amyloidogenic (i.e., monomeric) rodent amylin to test the …


Calcium's Role As Nuanced Modulator Of Cellular Physiology In The Brain, Hilaree N. Frazier, Shaniya Maimaiti, Katie L. Anderson, Lawrence D. Brewer, John C. Gant, Nada M. Porter, Olivier Thibault Feb 2017

Calcium's Role As Nuanced Modulator Of Cellular Physiology In The Brain, Hilaree N. Frazier, Shaniya Maimaiti, Katie L. Anderson, Lawrence D. Brewer, John C. Gant, Nada M. Porter, Olivier Thibault

Pharmacology and Nutritional Sciences Faculty Publications

Neuroscientists studying normal brain aging, spinal cord injury, Alzheimer’s disease (AD) and other neurodegenerative diseases have focused considerable effort on carefully characterizing intracellular perturbations in calcium dynamics or levels. At the cellular level, calcium is known for controlling life and death and orchestrating most events in between. For many years, intracellular calcium has been recognized as an essential ion associated with nearly all cellular functions from cell growth to degeneration. Often the emphasis is on the negative impact of calcium dysregulation and the typical worse-case-scenario leading inevitably to cell death. However, even high amplitude calcium transients, when executed acutely can …


Targeting Astrocytes Ameliorates Neurologic Changes In A Mouse Model Of Alzheimer's Disease, Jennifer L. Furman, Diana M. Sama, John C. Gant, Tina L. Beckett, M. Paul Murphy, Adam D. Bachstetter, Linda J. Van Eldik, Christopher M. Norris Nov 2012

Targeting Astrocytes Ameliorates Neurologic Changes In A Mouse Model Of Alzheimer's Disease, Jennifer L. Furman, Diana M. Sama, John C. Gant, Tina L. Beckett, M. Paul Murphy, Adam D. Bachstetter, Linda J. Van Eldik, Christopher M. Norris

Pharmacology and Nutritional Sciences Faculty Publications

Astrocytes are the most abundant cell type in the brain and play a critical role in maintaining healthy nervous tissue. In Alzheimer's disease (AD) and most other neurodegenerative disorders, many astrocytes convert to a chronically "activated" phenotype characterized by morphologic and biochemical changes that appear to compromise protective properties and/or promote harmful neuroinflammatory processes. Activated astrocytes emerge early in the course of AD and become increasingly prominent as clinical and pathological symptoms progress, but few studies have tested the potential of astrocyte-targeted therapeutics in an intact animal model of AD. Here, we used adeno-associated virus (AAV) vectors containing the astrocyte-specific …