Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

Touro College and University System

Series

2014

Humans

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

A Microrna-1280/Jag2 Network Comprises A Novel Biological Target In High-Risk Medulloblastoma, Fengfei Wang, Marc Remke, Tze-Chen Hsieh, Lizi Wu, Cynthia Hawkins, Joseph M. Wu, Erxi Wu Dec 2014

A Microrna-1280/Jag2 Network Comprises A Novel Biological Target In High-Risk Medulloblastoma, Fengfei Wang, Marc Remke, Tze-Chen Hsieh, Lizi Wu, Cynthia Hawkins, Joseph M. Wu, Erxi Wu

NYMC Faculty Publications

Over-expression of PDGF receptors (PDGFRs) has been previously implicated in high-risk medulloblastoma (MB) pathogenesis. However, the exact biological functions of PDGFRα and PDGFRβ signaling in MB biology remain poorly understood. Here, we report the subgroup specific expression of PDGFRα and PDGFRβ and their associated biological pathways in MB tumors. c-MYC, a downstream target of PDGFRβ but not PDGFRα, is involved in PDGFRβ signaling associated with cell proliferation, cell death, and invasion. Concurrent inhibition of PDGFRβ and c-MYC blocks MB cell proliferation and migration synergistically. Integrated analysis of miRNA and miRNA targets regulated by both PDGFRβ and c-MYC reveals that increased …


Kynurenine Aminotransferase Iii And Glutamine Transaminase L Are Identical Enzymes That Have Cysteine S-Conjugate Beta-Lyase Activity And Can Transaminate L-Selenomethionine, John T. Pinto, Boris F. Krasnikov, Steven Alcutt, Melanie E. Jones, Thambi Dorai, Arthur J L Cooper Nov 2014

Kynurenine Aminotransferase Iii And Glutamine Transaminase L Are Identical Enzymes That Have Cysteine S-Conjugate Beta-Lyase Activity And Can Transaminate L-Selenomethionine, John T. Pinto, Boris F. Krasnikov, Steven Alcutt, Melanie E. Jones, Thambi Dorai, Arthur J L Cooper

NYMC Faculty Publications

Three of the four kynurenine aminotransferases (KAT I, II, and IV) that synthesize kynurenic acid, a neuromodulator, are identical to glutamine transaminase K (GTK), α-aminoadipate aminotransferase, and mitochondrial aspartate aminotransferase, respectively. GTK/KAT I and aspartate aminotransferase/KAT IV possess cysteine S-conjugate β-lyase activity. The gene for the former enzyme, GTK/KAT I, is listed in mammalian genome data banks as CCBL1 (cysteine conjugate beta-lyase 1). Also listed, despite the fact that no β-lyase activity has been assigned to the encoded protein in the genome data bank, is a CCBL2 (synonym KAT III). We show that human KAT III/CCBL2 possesses cysteine S-conjugate β-lyase …


Hdac8 And Stat3 Repress Bmf Gene Activity In Colon Cancer Cells, Y Kang, Hui Nian, P Rajendran, W Dashwood, John T. Pinto, E Ho, R Dashwood Oct 2014

Hdac8 And Stat3 Repress Bmf Gene Activity In Colon Cancer Cells, Y Kang, Hui Nian, P Rajendran, W Dashwood, John T. Pinto, E Ho, R Dashwood

NYMC Faculty Publications

Histone deacetylase (HDAC) inhibitors are undergoing clinical trials as anticancer agents, but some exhibit resistance mechanisms linked to anti-apoptotic Bcl-2 functions, such as BH3-only protein silencing. HDAC inhibitors that reactivate BH3-only family members might offer an improved therapeutic approach. We show here that a novel seleno-α-keto acid triggers global histone acetylation in human colon cancer cells and activates apoptosis in a p21-independent manner. Profiling of multiple survival factors identified a critical role for the BH3-only member Bcl-2-modifying factor (Bmf). On the corresponding BMF gene promoter, loss of HDAC8 was associated with signal transducer and activator of transcription 3 (STAT3)/specificity protein …


Thiosulfoxide (Sulfane) Sulfur: New Chemistry And New Regulatory Roles In Biology, John Toohey, Arthur J L Cooper Aug 2014

Thiosulfoxide (Sulfane) Sulfur: New Chemistry And New Regulatory Roles In Biology, John Toohey, Arthur J L Cooper

NYMC Faculty Publications

The understanding of sulfur bonding is undergoing change. Old theories on hypervalency of sulfur and the nature of the chalcogen-chalcogen bond are now questioned. At the same time, there is a rapidly expanding literature on the effects of sulfur in regulating biological systems. The two fields are inter-related because the new understanding of the thiosulfoxide bond helps to explain the newfound roles of sulfur in biology. This review examines the nature of thiosulfoxide (sulfane, S0) sulfur, the history of its regulatory role, its generation in biological systems, and its functions in cells. The functions include synthesis of cofactors (molybdenum cofactor, …