Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

Selected Works

2019

DNA-binding

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Pot1 Proteins In Green Algae And Land Plants: Dna-Binding Properties And Evidence Of Co-Evolution With Telomeric Dna, Eugene V. Shakirov, Xiangyu Song, Jessica A. Joseph, Dorothy E. Shippen Oct 2019

Pot1 Proteins In Green Algae And Land Plants: Dna-Binding Properties And Evidence Of Co-Evolution With Telomeric Dna, Eugene V. Shakirov, Xiangyu Song, Jessica A. Joseph, Dorothy E. Shippen

Yevgeniy (Eugene) Shakirov

Telomeric DNA terminates with a single-stranded 3′ G-overhang that in vertebrates and fission yeast is bound by POT1 (Protection Of Telomeres). However, no in vitro telomeric DNA binding is associated with Arabidopsis POT1 paralogs. To further investigate POT1–DNA interaction in plants, we cloned POT1 genes from 11 plant species representing major branches of plant kingdom. Telomeric DNA binding was associated with POT1 proteins from the green alga Ostreococcus lucimarinus and two flowering plants, maize and Asparagus. Site-directed mutagenesis revealed that several residues critical for telomeric DNA recognition in vertebrates are functionally conserved in plant POT1 proteins. However, the plant proteins …


Dna Uptake By Type Iv Filaments, Kurt H. Piepenbrink Jun 2019

Dna Uptake By Type Iv Filaments, Kurt H. Piepenbrink

Kurt Piepenbrink

Bacterial uptake of DNA through type IV filaments is an essential component of natural competence in numerous gram-positive and gram-negative species. Recent advances in the field have broadened our understanding of the structures used to take up extracellular DNA. Here, we review seminal experiments in the literature describing DNA binding by type IV pili, competence pili and the flp pili of Micrococcus luteus; collectively referred to here as type IV filaments. We compare the current state of the field on mechanisms of DNA uptake for these three appendage systems and describe the current mechanistic understanding of both DNA-binding and …