Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

An Investigation Into The Adverse Effects Of Oxidative Stress From Exposure To Bisphenol A And Its Analogues, Rachel Nas Nov 2020

An Investigation Into The Adverse Effects Of Oxidative Stress From Exposure To Bisphenol A And Its Analogues, Rachel Nas

Senior Honors Theses

Oxidative stress is a physiological event caused by an overaccumulation of reactive oxygen species (ROS) within the body. While ROS are a natural by-product of oxygen metabolism, too many can lead to cell and tissue damage and contribute to many etiologies. Bisphenol A (BPA), a component of many plastic products, has been shown to induce oxidative stress. While the industrial usage of BPA usage has lessened, the safety of its replacements is unknown. This paper will primarily discuss ROS and mechanisms of oxidative stress, the usage of BPA and its analogues, etiologies associated with oxidative stress resulting from exposure to …


Understanding Cytochrome C Maturation In Anaerobic Archaea, Blake Wojciechowski May 2020

Understanding Cytochrome C Maturation In Anaerobic Archaea, Blake Wojciechowski

Biological Sciences Undergraduate Honors Theses

Methanoperedens nitroreducens (MPEBLZ), an archaeal methanotroph and close relative of Methanosarcina acetivorans, contain numerous cytochrome c proteins. However, difficulty in using these organisms as a model for cytochrome cresearch has created a pressure to express cytochrome c proteins in an organism that is much easier to work with. A punitive cytochrome c protein (MPEBLZ_04274) from M. nitroreducens was attempted to be cloned into a model methanogen M. acetivorans as well as Escherichia coli. Cytochrome c proteins are important for many metabolic processes within anaerobic archaea. In order for a mature cytochrome c to be formed heme must …


Evaluating The Anti-Cancer Efficacy Of A Synthetic Curcumin Analog On Human Melanoma Cells And Its Interaction With Standard Chemotherapeutics, Krishan Parashar, Siddhartha Sood, Ali Mehaidli, Colin Curran, Caleb Vegh, Christopher Nguyen, Christopher Pignanelli, Jianzhang Wu, Guang Liang, Yi Wang, Siyaram Pandey Mar 2020

Evaluating The Anti-Cancer Efficacy Of A Synthetic Curcumin Analog On Human Melanoma Cells And Its Interaction With Standard Chemotherapeutics, Krishan Parashar, Siddhartha Sood, Ali Mehaidli, Colin Curran, Caleb Vegh, Christopher Nguyen, Christopher Pignanelli, Jianzhang Wu, Guang Liang, Yi Wang, Siyaram Pandey

Medical Student Research Symposium

Melanoma is the leading cause of skin-cancer related deaths in North America. Metastatic melanoma is difficult to treat and chemotherapies have limited success. Furthermore, chemotherapies lead to toxic side effects due to nonselective targeting of normal cells. Curcumin is a natural product of Curcuma longa (turmeric) and has been shown to possess anti-cancer activity. However, due to its poor bioavailability and stability, natural curcumin is not an effective cancer treatment. We tested synthetic analogs of curcumin that are more stable. One of these derivatives, Compound A, has shown significant anti-cancer efficacy in colon, leukemia, and triple-negative inflammatory breast cancer cells. …


Computational Analysis Of Oxidative Stress In Endothelial Dysfunction: Insights On The Role Of Tetrahydrobiopterin, Ascorbate And Glutathione, Sheetal Kedar Panday Jan 2020

Computational Analysis Of Oxidative Stress In Endothelial Dysfunction: Insights On The Role Of Tetrahydrobiopterin, Ascorbate And Glutathione, Sheetal Kedar Panday

Wayne State University Dissertations

Oxidative stress and endothelial dysfunction are reported in the cardiovascular and neurovascular diseases. Oxidative stress is caused due to an increase in the generation of reactive oxygen (ROS) and nitrogen species (RNS) and incapacity of antioxidant systems to eliminate ROS and RNS. Endothelial dysfunction is characterized by a reduction in nitric oxide (NO) bioavailability. NO is constitutively produced by enzyme endothelial nitric oxide synthase (eNOS). A reduction in tetrahydrobiopterin (BH4), which is an essential cofactor of eNOS, can lead to eNOS uncoupling. There is complex interplay between the ROS/RNS and antioxidant system underlying pathophysiologies of vascular diseases, however our quantitative …