Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Life Sciences

Probing Large Intrinsically Disordered Regions Through Novel Sortase-Mediated Ligation, Leah Kjormoe May 2020

Probing Large Intrinsically Disordered Regions Through Novel Sortase-Mediated Ligation, Leah Kjormoe

Scholars Week

In the realm of proteins, it is widely accepted that structure informs function. However, there are many proteins that contain intrinsically disordered regions (IDRs). These regions are areas in which the protein lacks defined structure, and IDPs are also often unstable, which complicates structural studies. NMR spectroscopy is an established method for probing protein structure and has been applied to that end in small IDRs. However, larger IDRs often have spectral overlap that makes data difficult to interpret. Furthermore, low-concentration samples limit spectral clarity. One method to address these difficulties is to use sortase ligation and segmental labeling, which increases …


Towards The Development Of Low-Cost And Easily-Deployable Sensing Platforms For Phosphate, Maureen Pontarelli, Thomas Koch Apr 2020

Towards The Development Of Low-Cost And Easily-Deployable Sensing Platforms For Phosphate, Maureen Pontarelli, Thomas Koch

Chemistry & Biochemistry Student Scholarship

Maureen Pontarelli ’20
Major: Chemistry

Thomas Koch '20
Major: Biochemistry

Faculty Mentor: Dr. John Breen, Chemistry and Biochemistry


Periodic Table Club, Makayla Gill, Kailynn Jensen Apr 2020

Periodic Table Club, Makayla Gill, Kailynn Jensen

Honors Expanded Learning Clubs

This club is dedicated to teaching the generation of future scientists the periodic table. This is designed to be a unique take on a STEM club that uses the periodic table as a backbone for a solid foundation in chemistry.


Comparative Analysis Of The Human Serine Hydrolase Ovca2 To The Model Serine Hydrolase Homolog Fsh1 From S. Cerevisiae, Jessica S. Bun, Michael D. Slack, Daniel E. Schemenauer, R. Jeremy Johnson Mar 2020

Comparative Analysis Of The Human Serine Hydrolase Ovca2 To The Model Serine Hydrolase Homolog Fsh1 From S. Cerevisiae, Jessica S. Bun, Michael D. Slack, Daniel E. Schemenauer, R. Jeremy Johnson

Scholarship and Professional Work - LAS

Over 100 metabolic serine hydrolases are present in humans with confirmed functions in metabolism, immune response, and neurotransmission. Among potentially clinically relevant but uncharacterized human serine hydrolases is OVCA2, a serine hydrolase that has been linked with a variety of cancer-related processes. Herein, we developed a heterologous expression system for OVCA2 and determined the comprehensive substrate specificity of OVCA2 against two ester substrate libraries. Based on this analysis, OVCA2 was confirmed as a serine hydrolase with a strong preference for long-chain alkyl ester substrates (>10-carbons) and high selectivity against a variety of short, branched, and substituted esters. Substitutional analysis …


Development Of A Computer Algorithm For Generation Of Primers For Nucleic Acid Sequence Based Amplification (Nasba), Rohit Karnati Jan 2020

Development Of A Computer Algorithm For Generation Of Primers For Nucleic Acid Sequence Based Amplification (Nasba), Rohit Karnati

Honors Undergraduate Theses

Nucleic acid sequence based amplification (NASBA) is a primer based isothermal method of RNA/DNA amplification. Currently, primer design for NASBA has been restricted to hand creating sequences of oligonucleotides that must follow a set of rules to be compatible for the amplification process. This process of hand-creating primers is prone to error and time intensive. The detection of mutants, post amplification, also offers a benefit in point of care scenarios and the design of hybridization probes for sequences in the region of amplification is also an erroneous and time intensive process. By creating a program to design primers and hybridization …


Ile126his And Lys129his Surface Mutations Aid In Purification Of Haemophilus Influenzae Carbonic Anhydrase Through Increased Metal Ion Affinity, Timothy Rigdon, Kathleen Cornely Jan 2020

Ile126his And Lys129his Surface Mutations Aid In Purification Of Haemophilus Influenzae Carbonic Anhydrase Through Increased Metal Ion Affinity, Timothy Rigdon, Kathleen Cornely

Chemistry & Biochemistry Student Scholarship

Carbonic anhydrase (CA) is an enzyme that plays a major role in the survival of many bacterial, chiefly Haemophilus influenzae. Because of its crucial role in bacteria, recent research has turned to CA as a possible target for drug development to kill bacteria and possibly cure different bacterial diseases. While research has focused on this drug target, the isolation and purification of specific types of CA has remained a major obstacle for further research. The current method of immobilized metal affinity chromatography (IMAC) with a Ni-NTA column is used widely for CA purification; however, the H. influenzae carbonic anhydrase …