Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Crystal Structure Of Apobec3a Bound To Single-Stranded Dna Reveals Structural Basis For Cytidine Deamination And Specificity, Takahide Kouno, Tania V. Silvas, Brendan J. Hilbert, Shivender Shandilya, Markus-Frederik Bohn, Brian A. Kelch, William E. Royer, Mohan Somasundaran, Nese Kurt Yilmaz, Hiroshi Matsuo, Celia A. Schiffer Jul 2017

Crystal Structure Of Apobec3a Bound To Single-Stranded Dna Reveals Structural Basis For Cytidine Deamination And Specificity, Takahide Kouno, Tania V. Silvas, Brendan J. Hilbert, Shivender Shandilya, Markus-Frederik Bohn, Brian A. Kelch, William E. Royer, Mohan Somasundaran, Nese Kurt Yilmaz, Hiroshi Matsuo, Celia A. Schiffer

Celia A. Schiffer

Nucleic acid editing enzymes are essential components of the immune system that lethally mutate viral pathogens and somatically mutate immunoglobulins, and contribute to the diversification and lethality of cancers. Among these enzymes are the seven human APOBEC3 deoxycytidine deaminases, each with unique target sequence specificity and subcellular localization. While the enzymology and biological consequences have been extensively studied, the mechanism by which APOBEC3s recognize and edit DNA remains elusive. Here we present the crystal structure of a complex of a cytidine deaminase with ssDNA bound in the active site at 2.2 A. This structure not only visualizes the active site …


A Novel Population Of Cardiovascular Progenitors Persist In Neonates As Mesendodermal Cells, Julia Kim Jun 2017

A Novel Population Of Cardiovascular Progenitors Persist In Neonates As Mesendodermal Cells, Julia Kim

Loma Linda University Electronic Theses, Dissertations & Projects

The rise in mortality due to cardiovascular disease has increased the need to develop an efficient regenerative therapeutic for heart failure. Numerous cell-based therapies have been investigated for myocardial regeneration; however, an optimal progenitor has yet to be discovered. Identifying a resident cell population with enhanced ability to differentiate into multiple lineages would greatly contribute to the field of stem cell-based regenerative therapy. Evidence suggests that endogenous cardiovascular progenitor cells (CPCs) that have been isolated from the heart itself express ISL1, KDR, and MESP1, and are capable of differentiating into all major cardiac lineages. The earlier developmental stage at which …