Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

Western University

Gene signatures

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Pathway‐Extended Gene Expression Signatures Integrate Novel Biomarkers That Improve Predictions Of Patient Responses To Kinase Inhibitors, Ashis Bagchee‐Clark, Eliseos J. Mucaki, Tyson Whitehead, Peter Rogan Dec 2020

Pathway‐Extended Gene Expression Signatures Integrate Novel Biomarkers That Improve Predictions Of Patient Responses To Kinase Inhibitors, Ashis Bagchee‐Clark, Eliseos J. Mucaki, Tyson Whitehead, Peter Rogan

Biochemistry Publications

Cancer chemotherapy responses have been related to multiple pharmacogenetic biomarkers, often for the same drug. This study utilizes machine learning to derive multi‐gene expression signatures that predict individual patient responses to specific tyrosine kinase inhibitors, including erlotinib, gefitinib, sorafenib, sunitinib, lapatinib and imatinib. Support vector machine (SVM) learning was used to train mathematical models that distinguished sensitivity from resistance to these drugs using a novel systems biology‐based approach. This began with expression of genes previously implicated in specific drug responses, then expanded to evaluate genes whose products were related through biochemical pathways and interactions. Optimal pathway‐extended SVMs predicted responses in …


Pathway-Extended Gene Expression Signatures Integrate Novel Biomarkers That Improve Predictions Of Patient Responses To Kinase Inhibitors, Ashis Jem Bagchee-Clark, Eliseos J. Mucaki, Tyson Whitehead, Peter Rogan Nov 2020

Pathway-Extended Gene Expression Signatures Integrate Novel Biomarkers That Improve Predictions Of Patient Responses To Kinase Inhibitors, Ashis Jem Bagchee-Clark, Eliseos J. Mucaki, Tyson Whitehead, Peter Rogan

Biochemistry Publications

No abstract provided.


Pathway-Extended Gene Expression Signatures Integrate Novel Biomarkers That Improve Predictions Of Patient Responses To Kinase Inhibitors, Jem Bagchee-Clark, Eliseos J. Mucaki, Tyson Whitehead, Peter Rogan Nov 2020

Pathway-Extended Gene Expression Signatures Integrate Novel Biomarkers That Improve Predictions Of Patient Responses To Kinase Inhibitors, Jem Bagchee-Clark, Eliseos J. Mucaki, Tyson Whitehead, Peter Rogan

Biochemistry Publications

Cancer chemotherapy responses have been related to multiple pharmacogenetic biomarkers, often for the same drug. This study utilizes machine learning to derive multi-gene expression signatures that predict individual patient responses to specific tyrosine kinase inhibitors, including erlotinib, gefitinib, sorafenib, sunitinib, lapatinib and imatinib. Support Vector Machine learning was used to train mathematical models that distinguished sensitivity from resistance to these drugs using a novel systems biology-based approach. This began with expression of genes previously implicated in specific drug responses, then expanded to evaluate genes whose products were related through biochemical pathways and interactions. Optimal pathway-extended support vector machines predicted responses …


Multigene Signatures Of Responses To Chemotherapy Derived By Biochemically-Inspired Machine Learning., Peter K. Rogan Sep 2019

Multigene Signatures Of Responses To Chemotherapy Derived By Biochemically-Inspired Machine Learning., Peter K. Rogan

Biochemistry Publications

Pharmacogenomic responses to chemotherapy drugs can be modeled by supervised machine learning of expression and copy number of relevant gene combinations. Such biochemical evidence can form the basis of derived gene signatures using cell line data, which can subsequently be examined in patients that have been treated with the same drugs. These gene signatures typically contain elements of multiple biochemical pathways which together comprise multiple origins of drug resistance or sensitivity. The signatures can capture variation in these responses to the same drug among different patients.


Predicting Response To Platin Chemotherapy Agents With Biochemically-Inspired Machine Learning, Peter Rogan, Eliseos J. Mucaki, Dan Lizotte Nov 2018

Predicting Response To Platin Chemotherapy Agents With Biochemically-Inspired Machine Learning, Peter Rogan, Eliseos J. Mucaki, Dan Lizotte

Biochemistry Publications

Selection of effective genes that accurately predict chemotherapy response could improve cancer outcomes. We compare optimized gene signatures for cisplatin, carboplatin, and oxaliplatin response in the same cell lines, and respectively validate each with cancer patient data. Supervised support vector machine learning was used to derive gene sets whose expression was related to cell line GI50 values by backwards feature selection with cross-validation. Specific genes and functional pathways distinguishing sensitive from resistant cell lines are identified by contrasting signatures obtained at extreme vs. median GI50 thresholds. Ensembles of gene signatures at different thresholds are combined to reduce dependence …