Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Crystallographic And Computational Characterization Of Methyl Tetrel Bonding In S-Adenosylmethionine-Dependent Methyltransferases, Raymond C. Trievel, Steve Scheiner Nov 2018

Crystallographic And Computational Characterization Of Methyl Tetrel Bonding In S-Adenosylmethionine-Dependent Methyltransferases, Raymond C. Trievel, Steve Scheiner

Chemistry and Biochemistry Faculty Publications

Tetrel bonds represent a category of non-bonding interaction wherein an electronegative atom donates a lone pair of electrons into the sigma antibonding orbital of an atom in the carbon group of the periodic table. Prior computational studies have implicated tetrel bonding in the stabilization of a preliminary state that precedes the transition state in SN2 reactions, including methyl transfer. Notably, the angles between the tetrel bond donor and acceptor atoms coincide with the prerequisite geometry for the SN2 reaction. Prompted by these findings, we surveyed crystal structures of methyltransferases in the Protein Data Bank and discovered …


Characterization Of The Substrate Interactions And Regulation Of Protein Arginine Methyltransferase, Yalemi Morales Dec 2016

Characterization Of The Substrate Interactions And Regulation Of Protein Arginine Methyltransferase, Yalemi Morales

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Protein arginine methylation is a posttranslational modification catalyzed by the family of proteins known as the protein arginine methyltransferases (PRMTs). Thousands of methylated arginines have been found in mammalian cells. Many targets of arginine regulation are involved in important cellular processes like transcription, RNA transport and processing, translation, cellular signaling, and DNA repair. Since PRMT dysregulation has been linked to a variety of disease states, understanding how the activity of the PRMTs is regulated is of paramount importance. PRMT1 is the predominant PRMT, responsible for about 85% of all arginine methylation in cells, but very little is known about how …


Characterization Of The Substrate Specificity And Mechanism Of Protein Arginine Methyltransferase 1, Whitney Lyn Wooderchak May 2009

Characterization Of The Substrate Specificity And Mechanism Of Protein Arginine Methyltransferase 1, Whitney Lyn Wooderchak

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Protein arginine methyltransferases (PRMTs) posttranslationally modify protein arginine residues. Type I PRMTs catalyze the formation of monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA) via methyl group transfer from S-adenosyl methionine onto protein arginine residues. Type II PRMTs generate MMA and symmetric dimethylarginine. PRMT-methylation affects many biological processes. Although PRMTs are vital to normal development and function, PRMT-methylation is also linked to cardiovascular disease, stroke, multiple sclerosis, and cancer.

Thus far, nine human PRMT isoforms have been identified with orthologues present in yeast, plants, and fish. PRMT1 predominates, performing an estimated 85% of all protein arginine methylation in vivo. Yet, the substrate …