Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

Utah State University

Energy decomposition

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

C···O And Si···O Tetrel Bonds: Substituent Effects And Transfer Of The Sif3 Group, Zhihao Niu, Qiaozhuo Wu, Qingzhong Li, Steve Scheiner Jul 2023

C···O And Si···O Tetrel Bonds: Substituent Effects And Transfer Of The Sif3 Group, Zhihao Niu, Qiaozhuo Wu, Qingzhong Li, Steve Scheiner

Chemistry and Biochemistry Faculty Publications

The tetrel bond (TB) between 1,2-benzisothiazol-3-one-2-TF3-1,1-dioxide (T = C, Si) and the O atom of pyridine-1-oxide (PO) and its derivatives (PO-X, X = H, NO2, CN, F, CH3, OH, OCH3, NH2, and Li) is examined by quantum chemical means. The Si···O TB is quite strong, with interaction energies approaching a maximum of nearly 70 kcal/mol, while the C···O TB is an order of magnitude weaker, with interaction energies between 2.0 and 2.6 kcal/mol. An electron-withdrawing substituent on the Lewis base weakens this TB, while an electron-donating group has the opposite …


Theoretical Studies Of Ir And Nmr Spectral Changes Induced By Sigma-Hole Hydrogen, Halogen, Chalcogen, Pnicogen, And Tetrel Bonds In A Model Protein Environment, Mariusz Michalczyk, Wiktor Zierkiewicz, Rafał Wysokiński, Steve Scheiner Sep 2019

Theoretical Studies Of Ir And Nmr Spectral Changes Induced By Sigma-Hole Hydrogen, Halogen, Chalcogen, Pnicogen, And Tetrel Bonds In A Model Protein Environment, Mariusz Michalczyk, Wiktor Zierkiewicz, Rafał Wysokiński, Steve Scheiner

Chemistry and Biochemistry Faculty Publications

Various types of σ-hole bond complexes were formed with FX, HFY, H2FZ, and H3FT (X = Cl, Br, I; Y = S, Se, Te; Z = P, As, Sb; T = Si, Ge, Sn) as Lewis acid. In order to examine their interactions with a protein, N-methylacetamide (NMA), a model of the peptide linkage was used as the base. These noncovalent bonds were compared by computational means with H-bonds formed by NMA with XH molecules (X = F, Cl, Br, I). In all cases, the A–F bond, which lies opposite the base and is responsible for …


Implications Of Monomer Deformation For Tetrel And Pnicogen Bonds, Wiktor Zierkiewicz, Mariusz Michalczyk, Steve Scheiner Feb 2018

Implications Of Monomer Deformation For Tetrel And Pnicogen Bonds, Wiktor Zierkiewicz, Mariusz Michalczyk, Steve Scheiner

Chemistry and Biochemistry Faculty Publications

A series of TF4 and ZF5 molecules (T = Si, Ge, Sn and Z = P, As, Sb) were allowed to engage in tetrel and pnicogen bonds, respectively, with NH3, pyrazine, and HCN. The interaction energies are quite large, approaching 50 kcal mol-1 in some cases. The formation of each complex is accompanied by substantial geometrical deformation of the Lewis acid to accommodate the approaching base. The energy associated with this monomer rearrangement is the largest for the smaller central atoms Si and P, where it exceeds 20 kcal mol-1. The total reaction …


Detailed Comparison Of The Pnicogen Bond With Chalcogen, Halogen And Hydrogen Bonds, Steve Scheiner Jan 2012

Detailed Comparison Of The Pnicogen Bond With Chalcogen, Halogen And Hydrogen Bonds, Steve Scheiner

Chemistry and Biochemistry Faculty Publications

The characteristics of the pnicogen bond are explored using a variety of quantum chemical techniques. In particular, this interaction is compared with its halogen and chalcogen bond cousins, as well as with the more common H-bond. In general, these bonds are all of comparable strength. More specifically, they are strengthened by the presence of an electronegative substituent on the electron-acceptor atom, and each gains strength as one moves down the appropriate column of the periodic table, for example, from N to P to As. These noncovalent bonds owe their stability to a mixture in nearly equal parts of electrostatic attraction …