Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

Utah State University

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

2009

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

A Comparative Study Of The Structural Features And Kinetic Properties Of The Mofe And Vfe Proteins From Azotobacter Vinelandii, Miguel Alejandro Pabon Sanclemente May 2009

A Comparative Study Of The Structural Features And Kinetic Properties Of The Mofe And Vfe Proteins From Azotobacter Vinelandii, Miguel Alejandro Pabon Sanclemente

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Biological nitrogen fixation is accomplished in the bacterium Azotobacter vinelandii by means of three metalloenzymes: The molybdenum, vanadium, and iron-only nitrogenase. The knowledge regarding biological nitrogen fixation has come from studies on the Mo-dependent reaction. However, the V- and Fe-only-dependent reduction of nitrogen remains largely unknown.

By using homology modeling techniques, the protein folds that contain the metal cluster active sites for the V- and Fe-only nitrogenases were constructed. The models uncovered similarities and differences existing among the nitrogenases regarding the identity of the amino acid residues lining pivotal structural features for the correct functioning of the proteins. These differences, …


Characterization Of The Substrate Specificity And Mechanism Of Protein Arginine Methyltransferase 1, Whitney Lyn Wooderchak May 2009

Characterization Of The Substrate Specificity And Mechanism Of Protein Arginine Methyltransferase 1, Whitney Lyn Wooderchak

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Protein arginine methyltransferases (PRMTs) posttranslationally modify protein arginine residues. Type I PRMTs catalyze the formation of monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA) via methyl group transfer from S-adenosyl methionine onto protein arginine residues. Type II PRMTs generate MMA and symmetric dimethylarginine. PRMT-methylation affects many biological processes. Although PRMTs are vital to normal development and function, PRMT-methylation is also linked to cardiovascular disease, stroke, multiple sclerosis, and cancer.

Thus far, nine human PRMT isoforms have been identified with orthologues present in yeast, plants, and fish. PRMT1 predominates, performing an estimated 85% of all protein arginine methylation in vivo. Yet, the substrate …