Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Using Crispr-Cas9 To Construct Knockout Mutants In Dna-Repair Genes In Arabidopsis Thaliana, David Campbell Mar 2021

Using Crispr-Cas9 To Construct Knockout Mutants In Dna-Repair Genes In Arabidopsis Thaliana, David Campbell

Honors Theses

The mitochondria are known as the powerhouse of the cell, and just like a real powerhouse, it can be a dangerous place to store sensitive information. Energy generation and redox reactions in the mitochondria can cause damage to the DNA stored there, resulting in a higher mutation rate. Compared to their animal counterparts, however, plant mitochondria exhibit a lower mutation rate and a higher recombination rate. It is hypothesized that the unique DNA repair methods present in plant mitochondria are responsible for the phenomena observed there. To study the mechanics of DNA-repair in this organelle, however, researchers must be able …


Dissecting The Regulatory Network Of Sphingolipid Biosynthesis In Plants, Ariadna Gonzalez-Solis Nov 2020

Dissecting The Regulatory Network Of Sphingolipid Biosynthesis In Plants, Ariadna Gonzalez-Solis

Department of Biochemistry: Dissertations, Theses, and Student Research

Sphingolipids are a diverse group of lipids recognized as important components of cellular membranes and regulators of processes during development and in response to environmental stresses. Serine palmitoyltransferase (SPT) catalyzes the first step in sphingolipid biosynthesis and is a primary regulatory point for homeostasis. ORM proteins have been identified as negative regulators of SPT activity, however the mechanistic details of the regulation are only beginning to be understood. In this work, we show that ORM1 and ORM2 are essential for life cycle completion in Arabidopsis thaliana. Furthermore, the study of a structural ORM1 variant provided information about a transmembrane …


An Arabidopsis Protoplast Isolation Method Reduces Cytosolic Acidification And Activation Of The Chloroplast Stress Sensor Sensitive To Freezing 2, Allison C. Barnes, Christian G. Elowsky, Rebecca Roston Jan 2019

An Arabidopsis Protoplast Isolation Method Reduces Cytosolic Acidification And Activation Of The Chloroplast Stress Sensor Sensitive To Freezing 2, Allison C. Barnes, Christian G. Elowsky, Rebecca Roston

Department of Biochemistry: Faculty Publications

Chloroplasts adapt to freezing and other abiotic stresses in part by modifying their membranes. One key-remodeling enzyme is SENSITIVE TO FREEZING2 (SFR2). SFR2 is unusual because it does not respond to initial cold stress or cold acclimation, instead it responds during freezing conditions in Arabidopsis. This response has been shown to be sensitive to cytosolic acidification. The unique lipid products of SFR2 have also been detected in response to non-freezing stresses, but what causes SFR2 to respond in these stresses is unknown. Here, we investigate protoplast isolation as a representative of wounding stress. We show that SFR2 oligogalactolipid products accumulate …


Analysis Of Histone Deacetylase Involvement In Pseudomonas Syringae-Triggered Chromatin Changes, Jennifer Wies, Victoria Shum, Karin V. Van Dijk Apr 2016

Analysis Of Histone Deacetylase Involvement In Pseudomonas Syringae-Triggered Chromatin Changes, Jennifer Wies, Victoria Shum, Karin V. Van Dijk

UCARE Research Products

I had the great privilege of working with Dr. Karin van Dijk, through UCARE, researching the specific pathways through which histone deacetylation occurs in plants during the 2015-2016 academic year. My first year conducting research helped me develop my technical skills and learn about experimental protocols and how to conduct them. I would like to continue my research during the 2016-2017 academic year and now that I have a year of research experience, be able to further develop my skills and learn more about my research project.

Background

Pseudomonas syringae is a bacterial pathogen that is well known for causing …


Investigation Of Pathways For Complex Sphingolipid Biosynthesis In Arabidopsis Thaliana (L.) Heynh, Kyle Luttgeharm Dec 2015

Investigation Of Pathways For Complex Sphingolipid Biosynthesis In Arabidopsis Thaliana (L.) Heynh, Kyle Luttgeharm

Department of Biochemistry: Dissertations, Theses, and Student Research

Sphingolipids are essential components of eukaryote membranes. The ceramide backbone of complex sphingolipids is composed of an 18 carbon Long Chain Base (LCB) bound to a 16-26 carbon fatty acid (FA) through an amide linkage. Ceramides are synthesized de novo from a free LCB and fatty acyl coA by ceramide synthase (sphingosine N-acyl transferase, EC 2.3.1.24) which can be inhibited by the fungal mycotoxin Fumonisin B1. Arabidopsis thaliana contains three ceramide synthases denoted LOH1, LOH2, and LOH3 that have previously been hypothesized to have unique substrate preferences that control the final sphingolipid composition, different susceptibilities to …