Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

University of Massachusetts Amherst

Theses/Dissertations

Mass spectrometry

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Ni Site Structure And Function In Biological Sensing And Enzyme Activity, Hsin-Ting Huang Jul 2019

Ni Site Structure And Function In Biological Sensing And Enzyme Activity, Hsin-Ting Huang

Doctoral Dissertations

Ni(II) is one of the important cofactors involved in various enzyme functions. For organisms utilizing Ni(II), a regulation system is required to maintain Ni(II) homeostasis and prevent toxicity. The focus of this dissertation is on investigating the relationship between the Ni(II) site structure and the function of proteins, a Ni(II) sensor and a Ni(II) enzyme. RcnR, a Ni(II)/Co(II) sensor in E. coli, controls the expression of the Ni(II)/Co(II) exporter proteins, RcnAB. Due to the lack of structural information, the mechanism of metal induced allosteric regulation and metal selection is not fully elucidated. Results presented here show that binding of …


Examining Shsp-Substrate Capture And Chaperone Network Coordination Through Cross-Linking, Keith Ballard Jul 2018

Examining Shsp-Substrate Capture And Chaperone Network Coordination Through Cross-Linking, Keith Ballard

Doctoral Dissertations

Small heat shock proteins (sHSPs) and related α-crystallins are virtually ubiquitous, ATP-independent molecular chaperones linked to protein misfolding diseases. They comprise a conserved core α-crystallin domain (ACD) flanked by an evolutionarily variable N-terminal domain (NTD) and semi-conserved C-terminal extension/domain (CTD). They are capable of binding up to an equal mass of unfolding protein, forming large, heterogeneous sHSP-substrate complexes that coordinate with ATP-dependent chaperones for refolding. To derive common features of sHSP-substrate recognition, I compared the chaperone activity and specific sHSP-substrate interaction sites for three different sHSPs from Arabidopsis (At17.6B), pea (Ps18.1) and wheat (Ta16.9), for which the atomic solution-state structures …