Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

University of Arkansas, Fayetteville

2020

GWALP23

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Effect Of Charged Lipids On The Ionization Behavior Of Glutamic Acid Containing Transmembrane Helices, Brooke Nunn May 2020

Effect Of Charged Lipids On The Ionization Behavior Of Glutamic Acid Containing Transmembrane Helices, Brooke Nunn

Chemistry & Biochemistry Undergraduate Honors Theses

Transmembrane proteins make up critical components of living cells. Protein function can be greatly impacted by the charged state of its respective components, the side chains of amino acid residues. Thus far, in the lipid membrane, little is known about the properties of residues such as glutamic acid. To explore these properties, I have included glutamic acid in a suitable model peptide-lipid system for fundamental biophysical experiments. Within the system, I have placed a glutamic acid residue instead of leucine in the L14 position of the helical hydrophobic peptide GWALP23 (acetyl-GGALWLALALALAL14ALALWLAGA-amide). Substitutions of glutamine and aspartic acid serve …


Effect Of Ph And Lipid Composition On Membrane-Spanning Helices With Glutamic Acid Examined By Solid-State Nmr, Kelsey Marr May 2020

Effect Of Ph And Lipid Composition On Membrane-Spanning Helices With Glutamic Acid Examined By Solid-State Nmr, Kelsey Marr

Chemistry & Biochemistry Undergraduate Honors Theses

Transmembrane proteins constitute about 30% of the proteins in a mammalian cell and are involved in major biological processes. The dynamic properties of membrane proteins and the ionization states of particular side chains are important for biological function. The biophysical properties of membrane proteins nevertheless can be difficult to decode, particularly for glutamic acid in the lipid environment of cell membranes. To study the ionization of glutamic acid in transmembrane peptides, guest glutamic acid residues were substituted into the well-defined model helix of GWALP23 (acetyl-GGAL4WLALALALALAL16ALWLAGA-amide). These guest residues were placed at position L16 or L4 and specific 2H-labeled alanine residues …