Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Life Sciences

Cyanoacrylate Deposition Onto Sebum With Pretreatment Of Amine, Isaac Baltz May 2024

Cyanoacrylate Deposition Onto Sebum With Pretreatment Of Amine, Isaac Baltz

Chemistry & Biochemistry Undergraduate Honors Theses

Super glue, or ethyl cyanoacrylate, fuming is commonly used in forensic science to develop latent fingerprints on nonporous surfaces[7]. Fingerprints are primarily made up of the oily substance secreted by sebaceous glands better known as sebum. Previously it has been shown that exposure of fingerprints to diisopropylamine dramatically increases the deposition of cyanoacrylate polymers on the fingerprints[1]. However, the heterogeneity of any series of real fingerprints made it difficult to quantitatively assess this effect. This heterogeneity includes not just the amount of sebum but the presence of unknown amounts of proteins, amino acids, and other potential nucleophiles which catalyze the …


Studying The Phosphorylation Of Isocitrate Dehydrogenase In Humans, Hannah Smith May 2023

Studying The Phosphorylation Of Isocitrate Dehydrogenase In Humans, Hannah Smith

Chemistry & Biochemistry Undergraduate Honors Theses

Isocitrate dehydrogenase is an important enzyme in the citric acid cycle where it catalyzes the oxidative decarboxylation of isocitrate to alpha-ketoglutarate. While there are three isoforms of isocitrate dehydrogenase (IDH1, IDH2, and IDH3), this research will focus on IDH1. The phosphorylation of isocitrate dehydrogenase is a process that has been linked to the formation of both luminal-like and basal-like breast cancer. Despite these correlations, the mechanisms that cause breast cancer development are unknown. To examine this, an enzyme activity assay for each phosphorylation variant and crystallization were conducted. The results of these indicate that phosphorylation at each site (IDH1-T77, IDH1-S188, …


Expression, Purification, And Characterization Of Fibroblast Growth Factor 19, Elizabeth Ford May 2023

Expression, Purification, And Characterization Of Fibroblast Growth Factor 19, Elizabeth Ford

Chemistry & Biochemistry Undergraduate Honors Theses

Fibroblast growth factors (FGFs) are a family of signaling proteins with diverse biological functions. Fibroblast growth factor 19 (FGF19) regulates several vital physiological processes, including bile acid, glucose, and lipid homeostasis. However, its therapeutic potential is limited by its structural instability. The purpose of this study is to express, purify, and characterize recombinant FGF19 to build the foundation for the creation of stable mutants, which can be used to treat a variety of common diseases including type 2 diabetes, atherosclerosis, and nonalcoholic fatty liver disease. The parameters for overexpression in Escherichia coli were optimized according to optical density, inducer concentration, …


Expression, Characterization, And Investigation Of The Thermal Stability Of Fibroblast Growth Factor (Fgf) 19, Ridhikaanth Kalaiselvan May 2023

Expression, Characterization, And Investigation Of The Thermal Stability Of Fibroblast Growth Factor (Fgf) 19, Ridhikaanth Kalaiselvan

Chemistry & Biochemistry Undergraduate Honors Theses

Fibroblast growth factors are a family of cell signaling proteins that have the ability to bind to heparin and are involved in a wide range of physiological functions, such as angiogenesis, cell differentiation, cell proliferation, cell morphogenesis, and wound healing. Fibroblast growth factor (FGF) 19 is a signaling protein belonging to this large family of fibroblast growth factors (FGFs). FGF19 has a pronounced effect on various biological processes, including cell proliferation, cholesterol and lipid catabolism, and glucose homeostasis. As such, FGF19 is known to play an integral role in regulating many metabolic diseases, which piques the interest of the science …


Determining The Full-Length Structure Of Collagenase H Using Small-Angle X-Ray Scattering, Josie Carson Aug 2022

Determining The Full-Length Structure Of Collagenase H Using Small-Angle X-Ray Scattering, Josie Carson

Chemistry & Biochemistry Undergraduate Honors Theses

Known to cause gas gangrene, Hathewaya histolytica secretes two sister collagenases, collagenase G (Col G) and collagenase H (Col H), to degrade the triple helical structure of collagen to further infection in a host. Individual domains of Col H have been crystalized in previous studies, but methods in x-ray crystallization of full-length Col H have been unsuccessful. Using Small Angle X-Ray Scattering (SAXS) data, atomistic modeling was used to generate multiple conformations of Col H while accounting for flexibility between domains. Full-length Col H was found to adopt a two-state conformational model exhibiting a majority compact and a minority elongated …


Investigation Of The Binding Domain Interfaces Of The C-Terminus Of The Albino3 Insertase And The 43kda Chloroplast Signal Recognition Particle Subunit Via Single Molecule Förster Resonance Energy Transfer, Amanda Tomanek May 2022

Investigation Of The Binding Domain Interfaces Of The C-Terminus Of The Albino3 Insertase And The 43kda Chloroplast Signal Recognition Particle Subunit Via Single Molecule Förster Resonance Energy Transfer, Amanda Tomanek

Chemistry & Biochemistry Undergraduate Honors Theses

Fluorescent labeling is a technique used for visualizing functional groups contained in biomolecules by fluorescence imaging. This technique was used in this project to analyze post-translational targeting of light-harvesting chlorophyll-binding proteins (LHCP), which are the core complexes that harvest sunlight to drive photosynthetic electron transfer. This protein is synthesized in the cytosol and post-translationally targeted to the stroma of chloroplasts. CpSRP43 is a signal recognition particle (SRP) subunit unique to chloroplasts, which has been shown to interact with the stroma-soluble C-terminus of the thylakoid-bound Albino3 insertase (Alb3-Cterm). In the chloroplast stroma, targeting to thylakoids is performed via the cpSRP pathway …


Hyper Stable Variants Of Fgf-1-Fgf-2 Dimer, Madison Shields Mcclanahan May 2022

Hyper Stable Variants Of Fgf-1-Fgf-2 Dimer, Madison Shields Mcclanahan

Chemistry & Biochemistry Undergraduate Honors Theses

Fibroblast Growth Factors (FGFs), including FGF-1 and FGF-2, are proteins that play a crucial role in cell proliferation, cell differentiation, cell migration, and tissue repair. FGF-1 and FGF-2 are useful in accelerating the healing process in the human body; however, these proteins are naturally thermally unstable, resulting in a relatively low half-life in vivo. 1,8 In efforts to improve the stability of this protein, FGF-1 and FGF-2 proteins are engineered by combining the amino acid sequences of the two proteins to form a heterodimer and obtain novel properties. These two FGF variants are chosen for their specific wound healing capabilities. …


Synthesis, Structural Characterization, And In Vitro Biological Assessment Of Trans- Platinum (Ii) Thionate Complexes As Potent Anticancer Agents, Mia Alshami May 2022

Synthesis, Structural Characterization, And In Vitro Biological Assessment Of Trans- Platinum (Ii) Thionate Complexes As Potent Anticancer Agents, Mia Alshami

Chemistry & Biochemistry Undergraduate Honors Theses

The content of this thesis has been originally reported in our published paper, “trans-Platinum (II) Thionate Complexes: Synthesis, Structural Characterization, and in vitro Biological Assessment as Potent Anticancer Agents” ChemPlusChem 2019 84, 1525-1535, DOI: 10.1002/cplu.201900394, in which I served as coauthor. Cancer caused 9.6 million deaths in 2018 worldwide, with 18.1 million new diagnoses during that same year.The most widely used metal in anticancer drugs is platinum (Pt), and these drugs are used to treat almost 50% of cancer patients. To optimize drug effectiveness, trans-configured Pt(II) complexes have been introduced as a strategy to potentially overcome the …


Characterization Of A Protein-Small Molecule Interaction Between Microtubules And Novel Ruthenium-Polypyridyl Complexes, Chloe Hutchison May 2022

Characterization Of A Protein-Small Molecule Interaction Between Microtubules And Novel Ruthenium-Polypyridyl Complexes, Chloe Hutchison

Chemistry & Biochemistry Undergraduate Honors Theses

Microtubules are cytoskeletal filaments that play a role in essential functions within the cell such as cell motility, intracellular transport, structural support and chromosome segregation. Tubulin is a heterodimeric protein that exhibits GTP dependent polymerization and self- assembles into polar microtubule filaments. Microtubules are dynamic polymers corresponding to their role in separation of duplicated chromosomes during mitosis. As the polymers cycle through rounds of polymerization and depolymerization based on their nucleotide state, the chromosomes are pulled towards the poles in the mitotic cell. Their normal function and dynamics can be disrupted in highly proliferative cells that interrupt cell cycle progression …


Studying The Lysine Acetylation Of Aconitase Isozymes In E. Coli, Sara Ottinger May 2022

Studying The Lysine Acetylation Of Aconitase Isozymes In E. Coli, Sara Ottinger

Chemistry & Biochemistry Undergraduate Honors Theses

The contents of this thesis have been modified from the publication “Araujo J, Ottinger S, Venkat S, Gan Q and Fan C (2022) Studying Acetylation of Aconitase Isozymes by Genetic Code Expansion. Front. Chem. 10:862483”. Though studies have found multiple lysine sites in which acetylation takes place in Escherichia Coli aconitase, acetylation’s effects on the enzyme’s activity have yet to be studied. Aconitase is the dehydratase-hydratase found in the citric acid and glyoxylate cycles responsible for the reversible isomerization of citrate to isocitrate via cis-aconitate intermediate. There are two isoforms of aconitase in E. coli: AcnA and AcnB. In …


Validation Of Anti-Oxidative Stress Genes From Genome-Wide Screening Of Escherichia Coli, Carson Ercanbrack May 2021

Validation Of Anti-Oxidative Stress Genes From Genome-Wide Screening Of Escherichia Coli, Carson Ercanbrack

Chemistry & Biochemistry Undergraduate Honors Theses

The primary purpose of this project is to evaluate the genes that play a role in the oxidative stress response in Escherichia coli. In doing so, the entire genome of E. coli was subject to throughput in which individual genes were determined to have a role in the bacteria’s oxidative stress response. Moreover, this project focused on the validation of the genes that were able to pass the initial throughput stage. The genes were subject to two forms of validation. In the first validation technique, candidate genes were overexpressed and minimum inhibitory concentrations of hypochlorous acid were taken. Following, a …


Effect Of Charged Lipids On The Ionization Behavior Of Glutamic Acid Containing Transmembrane Helices, Brooke Nunn May 2020

Effect Of Charged Lipids On The Ionization Behavior Of Glutamic Acid Containing Transmembrane Helices, Brooke Nunn

Chemistry & Biochemistry Undergraduate Honors Theses

Transmembrane proteins make up critical components of living cells. Protein function can be greatly impacted by the charged state of its respective components, the side chains of amino acid residues. Thus far, in the lipid membrane, little is known about the properties of residues such as glutamic acid. To explore these properties, I have included glutamic acid in a suitable model peptide-lipid system for fundamental biophysical experiments. Within the system, I have placed a glutamic acid residue instead of leucine in the L14 position of the helical hydrophobic peptide GWALP23 (acetyl-GGALWLALALALAL14ALALWLAGA-amide). Substitutions of glutamine and aspartic acid serve …


Effect Of Ph And Lipid Composition On Membrane-Spanning Helices With Glutamic Acid Examined By Solid-State Nmr, Kelsey Marr May 2020

Effect Of Ph And Lipid Composition On Membrane-Spanning Helices With Glutamic Acid Examined By Solid-State Nmr, Kelsey Marr

Chemistry & Biochemistry Undergraduate Honors Theses

Transmembrane proteins constitute about 30% of the proteins in a mammalian cell and are involved in major biological processes. The dynamic properties of membrane proteins and the ionization states of particular side chains are important for biological function. The biophysical properties of membrane proteins nevertheless can be difficult to decode, particularly for glutamic acid in the lipid environment of cell membranes. To study the ionization of glutamic acid in transmembrane peptides, guest glutamic acid residues were substituted into the well-defined model helix of GWALP23 (acetyl-GGAL4WLALALALALAL16ALWLAGA-amide). These guest residues were placed at position L16 or L4 and specific 2H-labeled alanine residues …


Autofluorescence To Study The Effects Of Acid Concentration On Cellular Metabolism In Vitro, Robin L. Raley May 2019

Autofluorescence To Study The Effects Of Acid Concentration On Cellular Metabolism In Vitro, Robin L. Raley

Chemistry & Biochemistry Undergraduate Honors Theses

Ultraviolet (UV) radiation-induced sunburns and their accompanying afflictions are a growing public health concern in the United States. There is a need for techniques that can accurately and non-invasively characterize the physiology of sunburned skin tissue directly after UV-damage and applying a topical skin treatment to relieve pain and promote healing. Two-photon excited fluorescence (TPEF) microscopy and fluorescence lifetime imaging (FLIM) can be used to investigate metabolic processes in live cells through endogenous fluorescence of the cofactors, NADH and FAD. These methods employ the optical redox ratio of FAD/(NADH+FAD), mean NADH lifetime, and the separation of the free and bound …


Enzyme Kinetics Studies To Guide Mathematical Modeling Of Microdialysis Sampling To Predict In Situ Biochemistry, Justin M. Klucher May 2017

Enzyme Kinetics Studies To Guide Mathematical Modeling Of Microdialysis Sampling To Predict In Situ Biochemistry, Justin M. Klucher

Chemistry & Biochemistry Undergraduate Honors Theses

Microdialysis is a diffusion-based sampling method that can be useful for monitoring various biological systems. Matrix metalloproteinases are a class of enzymes responsible for remodeling the extracellular matrix that, when dysregulated, are linked to various diseases. The delivery method of microdialysis is of particular interest as a sampling technique for enzymatic reactions. Microdialysis was performed in vitro using a model enzyme, porcine pancreatic elastase, because it is a useful substitute for matrix metalloproteinases. A colorimetric substrate for elastase, succinyl-ala-ala-ala-p-nitroanilide, and its product p-nitroaniline were measured using a UV-Vis spectrophotometer. Using an expanded Beer’s Law equation, both analytes’ concentrations were determined …


Engineering A Mutation In The Heparin Binding Pocket Of The Human Fibroblast Growth Factor, Roshni Patel May 2016

Engineering A Mutation In The Heparin Binding Pocket Of The Human Fibroblast Growth Factor, Roshni Patel

Chemistry & Biochemistry Undergraduate Honors Theses

Fibroblast growth factors (FGFs) are family of proteins that belong to a group of growth factors that are found in mammals and play an important role in angiogenesis, differentiation, organogenesis, and tissue repair. In summary, their main functionality is involved in cell division and proliferation. Because FGFs plays such a vital role in cell proliferation, they are mainly involved in the process of wound healing and injuries. FGF binds to its ligand, heparin—a heavily sulfated glycosaminoglycan. The binding of heparin to FGF occurs through electrostatic interactions, specifically between the negatively charged sulfate groups on heparin and positively charged residues such …


Synthesis Of Microgel Polymers As Catalysts, Hannah N. Miller May 2016

Synthesis Of Microgel Polymers As Catalysts, Hannah N. Miller

Chemistry & Biochemistry Undergraduate Honors Theses

New developments in organic synthesis show promise in achieving the best catalytic properties for the hydrolysis of glycosidic bonds through microgel polymers and transition metal complexes. A monomer mix of ethylene glycol dimethacrylate, butyl acrylate, and styrene form miniemulsion polymers after sonication and exposure to UV light. Gravimetrical analysis is used to determine the most suitable polymerization conditions by performing experiments at varying pH values, temperatures, monomer amounts, initiator amounts, and lamp heights. The final data show that the best polymerization conditions are a pH of 10.50 at 0°C with a high monomer ratio, 20% initiator amount, and a lamp …


Deciphering The Role Of Glycine134 In The Human Acidic Growth Factor-1’S Binding To Heparin, Adam W. Burroughs May 2016

Deciphering The Role Of Glycine134 In The Human Acidic Growth Factor-1’S Binding To Heparin, Adam W. Burroughs

Chemistry & Biochemistry Undergraduate Honors Theses

Human acidic fibroblast growth factor 1 (FGF-1) is a potent modulator of cell survival and exhibits a universal role in various physiological processes. Though potent, FGF-1 unbound to heparin is known to show a poor thermal stability and a relatively short in vivo half-life. Much is known about the structure and relation of FGF-1 with heparin yet there is still unknown information regarding the exact role of heparin in stabilizing FGF-1. Thus, the aim of this study is to mutate glycine at position 134 to glutamic acid in wild type FGF1. G134 is located in the heparin binding pocket, thus …


Influence Of Cholesterol On Single Arginine-Containing Transmembrane Helical Peptides, Jordana K. Thibado May 2016

Influence Of Cholesterol On Single Arginine-Containing Transmembrane Helical Peptides, Jordana K. Thibado

Chemistry & Biochemistry Undergraduate Honors Theses

An essential component of animal cells, cholesterol exerts significant influence on the physical properties of the cell membrane and in turn, its constituents. One such category of constituents, the membrane proteins, are responsible for diverse and essential biological functions and often contain polar amino acids. Although sparse within the hydrophobic interior of lipid-bilayer membranes, polar amino acid residues are highly conserved and may play pivotal roles in determining specific structural and functional properties of key proteins. To gain greater understanding of the lipid membrane environment, and more broadly, cellular function, a model peptide framework termed “GWALP23” (acetyl-GGALWLALALAL12AL14 …


Molecular Mechanisms Of Tandem Cbd Of Clostridium Histolyticum, Dawn Weir May 2015

Molecular Mechanisms Of Tandem Cbd Of Clostridium Histolyticum, Dawn Weir

Chemistry & Biochemistry Undergraduate Honors Theses

In order to spread infections, bacterial collagenases methodically unravel collagen fibril in tissues. Collagen is the most abundant protein in the body, and can be found in the skin, bone and cartilage [1]. Two collagenases, ColG and ColH, synergistically dismantle collagen fibrils by seeking different weak links in the collagen structure. The collagen-binding domain (CBD) of these collagenases binds to most vulnerable regions in collagen [8]. Without CBDs, collagen fibril cannot be degraded. Cells express collagen receptors in order to anchor themselves, which is a critical step in cell proliferation. Binding sites for some collagen receptors, such as integrin and …