Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

PDF

Mutation

Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 33

Full-Text Articles in Life Sciences

Expression Changes Confirm Genomic Variants Predicted To Result In Allele-Specific, Alternative Mrna Splicing, Peter Rogan Mar 2020

Expression Changes Confirm Genomic Variants Predicted To Result In Allele-Specific, Alternative Mrna Splicing, Peter Rogan

Biochemistry Publications

Splice isoform structure and abundance can be affected by either noncoding or masquerading coding variants that alter the structure or abundance of transcripts. When these variants are common in the population, these nonconstitutive transcripts are sufficiently frequent so as to resemble naturally occurring, alternative mRNA splicing. Prediction of the effects of such variants has been shown to be accurate using information theory-based methods. Single nucleotide polymorphisms (SNPs) predicted to significantly alter natural and/or cryptic splice site strength were shown to affect gene expression. Splicing changes for known SNP genotypes were confirmed in HapMap lymphoblastoid cell lines with gene expression microarrays …


Transcription Factor Binding Site Clusters Identify Target Genes With Similar Tissue-Wide Expression And Buffer Against Mutations., Peter Rogan, Ruipeng Lu Jan 2019

Transcription Factor Binding Site Clusters Identify Target Genes With Similar Tissue-Wide Expression And Buffer Against Mutations., Peter Rogan, Ruipeng Lu

Biochemistry Publications

Background: The distribution and composition of cis-regulatory modules composed of transcription factor (TF) binding site (TFBS) clusters in promoters substantially determine gene expression patterns and TF targets. TF knockdown experiments have revealed that TF binding profiles and gene expression levels are correlated. We use TFBS features within accessible promoter intervals to predict genes with similar tissue-wide expression patterns and TF targets using Machine Learning (ML). Methods: Bray-Curtis Similarity was used to identify genes with correlated expression patterns across 53 tissues. TF targets from knockdown experiments were also analyzed by this approach to set up the ML framework. TFBSs were …


Conservative Tryptophan Mutations In Protein Tyrosine Phosphatase Ptp1b And Its Effect On Catalytic Rate And Chemical Reaction, Teisha Richan May 2017

Conservative Tryptophan Mutations In Protein Tyrosine Phosphatase Ptp1b And Its Effect On Catalytic Rate And Chemical Reaction, Teisha Richan

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Protein-tyrosine phosphatases (PTPs) catalyze the hydrolysis of phosphorylated tyrosines by a 2-step mechanism involving nucleophilic attack by cysteine and general acid catalysis by aspartic acid. In most PTPs the aspartic acid resides on a flexible protein loop, consisting of about a dozen residues, called the WPD loop. PTP catalysis rates span several orders of magnitude, and differences in WPD loop dynamics have recently been show to correlate with the rate of enzymatic catalysis. The rate of WPD loop motion could possibly be related to a widely conserved tryptophan residue on the WPD loop. Therefore, point mutants were made in PTP1B …


Flagellar Formation In C-Ring-Defective Mutants By Overproduction Of Flii, The Atpase Specific For Flagellar Type Iii Secretion, Manabu Konishi, Masaomi Kanbe, Jonathan L. Mcmurry, Shin-Ichi Aizawa Mar 2017

Flagellar Formation In C-Ring-Defective Mutants By Overproduction Of Flii, The Atpase Specific For Flagellar Type Iii Secretion, Manabu Konishi, Masaomi Kanbe, Jonathan L. Mcmurry, Shin-Ichi Aizawa

Jonathan McMurry

The flagellar cytoplasmic ring (C ring), which consists of three proteins, FliG, FliM, and FliN, is located on the cytoplasmic side of the flagellum. The C ring is a multifunctional structure necessary for flagellar protein secretion, torque generation, and switching of the rotational direction of the motor. The deletion of any one of the fliG, fliM, and fliN genes results in a Fla - phenotype. Here, we show that the overproduction of the flagellum-specific ATPase FliI overcomes the inability of basal bodies with partial C-ring structures to produce complete flagella. Flagella made upon FliI overproduction were paralyzed, indicating that an …


Dna Polymerase Zeta-Dependent Mutagenesis: Molecular Specificity, Extent Of Error-Prone Synthesis, And The Role Of Dntp Pools, Olga V. Kochenova Dec 2016

Dna Polymerase Zeta-Dependent Mutagenesis: Molecular Specificity, Extent Of Error-Prone Synthesis, And The Role Of Dntp Pools, Olga V. Kochenova

Theses & Dissertations

Despite multiple DNA repair pathways, DNA lesions can escape repair and compromise normal chromosomal replication, leading to genome instability. Cells utilize specialized low-fidelity Translesion Synthesis (TLS) DNA polymerases to bypass lesions and rescue arrested replication forks. TLS is a highly conserved two-step process that involves insertion of a nucleotide opposite a lesion and extension of the resulting aberrant primer terminus. The first step can be performed by both replicative and TLS DNA polymerases and, because of non-instructive DNA lesions, often results in a nucleotide misincorporation. The second step is almost exclusively catalyzed by DNA polymerase ζ …


The Dual Regulatory Role Of Amino Acids Leu480 And Gln481 Of Prothrombin, Joesph R. Wiencek, Jamila Hirbawi, Vivien C. Yee, Michael Kalafatis Jan 2016

The Dual Regulatory Role Of Amino Acids Leu480 And Gln481 Of Prothrombin, Joesph R. Wiencek, Jamila Hirbawi, Vivien C. Yee, Michael Kalafatis

Chemistry Faculty Publications

Prothrombin (FII) is activated to α-thrombin (IIa) by prothrombinase. Prothrombinase is composed of a catalytic subunit, factor Xa (fXa), and a regulatory subunit, factor Va (fVa), assembled on a membrane surface in the presence of divalent metal ions. We constructed, expressed, and purified several mutated recombinant FII (rFII) molecules within the previously determined fVa-dependent binding site for fXa (amino acid region 473–487 of FII). rFII molecules bearing overlapping deletions within this significant region first established the minimal stretch of amino acids required for the fVa-dependent recognition exosite for fXa in prothrombinase within the amino acid sequence Ser478–Val479 …


It Is All About (U)Biquitin: Role Of Altered Ubiquitin-Proteasome System And Uchl1 In Alzheimer Disease, Antonella Tramutola, Fabio Di Domenico, Eugenio Barone, Marzia Perluigi, D. Allan Butterfield Jan 2016

It Is All About (U)Biquitin: Role Of Altered Ubiquitin-Proteasome System And Uchl1 In Alzheimer Disease, Antonella Tramutola, Fabio Di Domenico, Eugenio Barone, Marzia Perluigi, D. Allan Butterfield

Chemistry Faculty Publications

Free radical-mediated damage to macromolecules and the resulting oxidative modification of different cellular components are a common feature of aging, and this process becomes much more pronounced in age-associated pathologies, including Alzheimer disease (AD). In particular, proteins are particularly sensitive to oxidative stress-induced damage and these irreversible modifications lead to the alteration of protein structure and function. In order to maintain cell homeostasis, these oxidized/damaged proteins have to be removed in order to prevent their toxic accumulation. It is generally accepted that the age-related accumulation of “aberrant” proteins results from both the increased occurrence of damage and the decreased efficiency …


Mutations In Conserved Residues Of The C. Elegans Microrna Argonaute Alg-1 Identify Separable Functions In Alg-1 Mirisc Loading And Target Repression, Anna Y. Zinovyeva, Samir Bouasker, Martin J. Simard, Christopher M. Hammell, Victor R. Ambros Oct 2015

Mutations In Conserved Residues Of The C. Elegans Microrna Argonaute Alg-1 Identify Separable Functions In Alg-1 Mirisc Loading And Target Repression, Anna Y. Zinovyeva, Samir Bouasker, Martin J. Simard, Christopher M. Hammell, Victor R. Ambros

Victor R. Ambros

microRNAs function in diverse developmental and physiological processes by regulating target gene expression at the post-transcriptional level. ALG-1 is one of two Caenorhabditis elegans Argonautes (ALG-1 and ALG-2) that together are essential for microRNA biogenesis and function. Here, we report the identification of novel antimorphic (anti) alleles of ALG-1 as suppressors of lin-28(lf) precocious developmental phenotypes. The alg-1(anti) mutations broadly impair the function of many microRNAs and cause dosage-dependent phenotypes that are more severe than the complete loss of ALG-1. ALG-1(anti) mutant proteins are competent for promoting Dicer cleavage of microRNA precursors and for associating with and stabilizing microRNAs. However, …


Translesion Synthesis And Mutations: On The Mutagenic Properties Of The Two Dna Lesions, 8-Oxo-G And Pt-Gg, And The Functions Of Y-Family Dna Polymerases And Rev3l On The Bypass Of Each Of The Dna Lesions In Mammalian Cells, Lizhen Guo Apr 2015

Translesion Synthesis And Mutations: On The Mutagenic Properties Of The Two Dna Lesions, 8-Oxo-G And Pt-Gg, And The Functions Of Y-Family Dna Polymerases And Rev3l On The Bypass Of Each Of The Dna Lesions In Mammalian Cells, Lizhen Guo

Electronic Thesis and Dissertation Repository

I studied the capabilities of the two DNA lesions 8-oxo-guanine and cisplatin intrastrand crosslinked 1,2-d(GpG) or Pt-GG to cause mutations in mammalian cells. Using isogenic cell lines generated from mice with selective gene knockouts of distinct DNA polymerases as models, I deduced the biological functions of the translesion DNA polymerases Pol eta, Pol kappa, Pol iota, Rev1 and Rev3L on bypassing each of the lesions 8-oxo-G and Pt-GG. My study takes advantage of the Next Generation Sequencing (NGS) technology to determine mutagenic effects of the DNA lesions in vivo and effects of translesion DNA polymerases on bypassing the lesions. Through …


Evolution Of The Influenza A Virus Genome During Development Of Oseltamivir Resistance In Vitro, Nicholas Renzette, Daniel R. Caffrey, Konstantin B. Zeldovich, Ping Liu, Glen R. Gallagher, Daniel Aiello, Alyssa J. Porter, Evelyn A. Kurt-Jones, Daniel N. Bolon, Yu-Ping Poh, Jeffrey D. Jensen, Celia A. Schiffer, Timothy F. Kowalik, Robert W. Finberg, Jennifer P. Wang Jan 2015

Evolution Of The Influenza A Virus Genome During Development Of Oseltamivir Resistance In Vitro, Nicholas Renzette, Daniel R. Caffrey, Konstantin B. Zeldovich, Ping Liu, Glen R. Gallagher, Daniel Aiello, Alyssa J. Porter, Evelyn A. Kurt-Jones, Daniel N. Bolon, Yu-Ping Poh, Jeffrey D. Jensen, Celia A. Schiffer, Timothy F. Kowalik, Robert W. Finberg, Jennifer P. Wang

Celia A. Schiffer

Influenza A virus (IAV) is a major cause of morbidity and mortality throughout the world. Current antiviral therapies include oseltamivir, a neuraminidase inhibitor that prevents the release of nascent viral particles from infected cells. However, the IAV genome can evolve rapidly, and oseltamivir resistance mutations have been detected in numerous clinical samples. Using an in vitro evolution platform and whole-genome population sequencing, we investigated the population genomics of IAV during the development of oseltamivir resistance. Strain A/Brisbane/59/2007 (H1N1) was grown in Madin-Darby canine kidney cells with or without escalating concentrations of oseltamivir over serial passages. Following drug treatment, the H274Y …


Conversion Of Red Fluorescent Protein Into A Bright Blue Probe, Oksana M. Subach, Illia S. Gundorov, Masami Yoshimura, Fedor V. Subach, Jinghang Zhang, David Grunwald, Ekaterina A. Souslova, Dmitriy M. Chudakov, Vladislav V. Verkhusha Nov 2014

Conversion Of Red Fluorescent Protein Into A Bright Blue Probe, Oksana M. Subach, Illia S. Gundorov, Masami Yoshimura, Fedor V. Subach, Jinghang Zhang, David Grunwald, Ekaterina A. Souslova, Dmitriy M. Chudakov, Vladislav V. Verkhusha

David Grünwald

We used a red chromophore formation pathway, in which the anionic red chromophore is formed from the neutral blue intermediate, to suggest a rational design strategy to develop blue fluorescent proteins with a tyrosine-based chromophore. The strategy was applied to red fluorescent proteins of the different genetic backgrounds, such as TagRFP, mCherry, HcRed1, M355NA, and mKeima, which all were converted into blue probes. Further improvement of the blue variant of TagRFP by random mutagenesis resulted in an enhanced monomeric protein, mTagBFP, characterized by the substantially higher brightness, the faster chromophore maturation, and the higher pH stability than blue fluorescent proteins …


Autonomy And Robustness Of Translocation Through The Nuclear Pore Complex: A Single-Molecule Study, Thomas Dange, David Grunwald, Antje Grunwald, Reiner Peters, Ulrich Kubitscheck Nov 2014

Autonomy And Robustness Of Translocation Through The Nuclear Pore Complex: A Single-Molecule Study, Thomas Dange, David Grunwald, Antje Grunwald, Reiner Peters, Ulrich Kubitscheck

David Grünwald

All molecular traffic between nucleus and cytoplasm occurs via the nuclear pore complex (NPC) within the nuclear envelope. In this study we analyzed the interactions of the nuclear transport receptors kapalpha2, kapbeta1, kapbeta1DeltaN44, and kapbeta2, and the model transport substrate, BSA-NLS, with NPCs to determine binding sites and kinetics using single-molecule microscopy in living cells. Recombinant transport receptors and BSA-NLS were fluorescently labeled by AlexaFluor 488, and microinjected into the cytoplasm of living HeLa cells expressing POM121-GFP as a nuclear pore marker. After bleaching the dominant GFP fluorescence the interactions of the microinjected molecules could be studied using video microscopy …


Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer May 2014

Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer

University Scholar Projects

Somatic mutations may drive tumorigenesis or lead to new, immunogenic epitopes (neoantigens). The immune system is thought to represses neoplastic growths through the recognition of neoantigens presented only by tumor cells. To study mutations as well as the immune response to mutation-generated antigens, we have created a conditional knockin mouse line with a gene encoding, 5’ to 3’, yellow fluorescent protein (YFP), ovalbumin (which is processed to the immunologically recognizable peptide, SIINFEKL), and cyan fluorescent protein (CFP), or, YFP-ovalbumin-CFP. A frame shift mutation has been created at the 5’ end of the ovalbumin gene, hence YFP should always be expressed, …


Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer May 2014

Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer

Honors Scholar Theses

Somatic mutations may drive tumorigenesis or lead to new, immunogenic epitopes (neoantigens). The immune system is thought to represses neoplastic growths through the recognition of neoantigens presented only by tumor cells. To study mutations as well as the immune response to mutation-generated antigens, we have created a conditional knockin mouse line with a gene encoding, 5’ to 3’, yellow fluorescent protein (YFP), ovalbumin (which is processed to the immunologically recognizable peptide, SIINFEKL), and cyan fluorescent protein (CFP), or, YFP-ovalbumin-CFP. A frame shift mutation has been created at the 5’ end of the ovalbumin gene, hence YFP should always be expressed, …


Validation Of Predicted Mrna Splicing Mutations Using High-Throughput Transcriptome Data, Coby Viner, Stephanie Dorman, Ben Shirley, Peter Rogan Jan 2014

Validation Of Predicted Mrna Splicing Mutations Using High-Throughput Transcriptome Data, Coby Viner, Stephanie Dorman, Ben Shirley, Peter Rogan

Biochemistry Publications

Interpretation of variants present in complete genomes or exomes reveals numerous sequence changes, only a fraction of which are likely to be pathogenic. Mutations have been traditionally inferred from allele frequencies and inheritance patterns in such data. Variants predicted to alter mRNA splicing can be validated by manual inspection of transcriptome sequencing data, however this approach is intractable for large datasets. These abnormal mRNA splicing patterns are characterized by reads demonstrating either exon skipping, cryptic splice site use, and high levels of intron inclusion, or combinations of these properties. We present, Veridical, an in silico method for the automatic validation …


Redox-Dependent Stability, Protonation, And Reactivity Of Cysteine-Bound Heme Proteins, Fangfang Zhong, George P. Lisi, Daniel P. Collins, John H. Dawson, Ekaterina V. Pletneva Jan 2014

Redox-Dependent Stability, Protonation, And Reactivity Of Cysteine-Bound Heme Proteins, Fangfang Zhong, George P. Lisi, Daniel P. Collins, John H. Dawson, Ekaterina V. Pletneva

Dartmouth Scholarship

Cysteine-bound hemes are key components of many enzymes and biological sensors. Protonation (deprotonation) of the Cys ligand often accompanies redox transformations of these centers. To characterize these phenomena, we have engineered a series of Thr78Cys/Lys79Gly/Met80X mutants of yeast cytochrome c (cyt c) in which Cys78 becomes one of the axial ligands to the heme. At neutral pH, the protonation state of the coordinated Cys differs for the ferric and ferrous heme species, with Cys binding as a thiolate and a thiol, respectively. Analysis of redox-dependent stability and alkaline transitions of these model proteins, as well as comparisons to Cys …


Splicing Mutation Analysis Reveals Previously Unrecognized Pathways In Lymph Node-Invasive Breast Cancer., Stephanie N Dorman, Coby Viner, Peter K Rogan Jan 2014

Splicing Mutation Analysis Reveals Previously Unrecognized Pathways In Lymph Node-Invasive Breast Cancer., Stephanie N Dorman, Coby Viner, Peter K Rogan

Biochemistry Publications

Somatic mutations reported in large-scale breast cancer (BC) sequencing studies primarily consist of protein coding mutations. mRNA splicing mutation analyses have been limited in scope, despite their prevalence in Mendelian genetic disorders. We predicted splicing mutations in 442 BC tumour and matched normal exomes from The Cancer Genome Atlas Consortium (TCGA). These splicing defects were validated by abnormal expression changes in these tumours. Of the 5,206 putative mutations identified, exon skipping, leaky or cryptic splicing was confirmed for 988 variants. Pathway enrichment analysis of the mutated genes revealed mutations in 9 NCAM1-related pathways, which were significantly increased in samples with …


Mutational Analysis Of The Rotavirus Nsp4 Enterotoxic Domain That Binds To Caveolin-1, Judith M. Ball, Megan E. Schroeder, Cecelia V. Williams, Friedhelm Schroeder, Rebecca D. Parr Nov 2013

Mutational Analysis Of The Rotavirus Nsp4 Enterotoxic Domain That Binds To Caveolin-1, Judith M. Ball, Megan E. Schroeder, Cecelia V. Williams, Friedhelm Schroeder, Rebecca D. Parr

Faculty Publications

Background: Rotavirus (RV) nonstructural protein 4 (NSP4) is the first described viral enterotoxin, which induces early secretory diarrhea in neonatal rodents. Our previous data show a direct interaction between RV NSP4 and the structural protein of caveolae, caveolin-1 (cav-1), in yeast and mammalian cells. The binding site of cav-1 mapped to the NSP4 amphipathic helix, and led us to examine which helical face was responsible for the interaction.

Methods: A panel of NSP4 mutants were prepared and tested for binding to cav-1 by yeast two hybrid and direct binding assays. The charged residues of the NSP4 amphipathic helix were changed …


Insights Into Mrnp Biogenesis Provided By New Genetic Interactions Among Export And Transcription Factors, Francisco Estruch, Christine Hodge, Natalia Gómez-Navarro, Lorena Peiró-Chova, Catherine V. Heath, Charles N. Cole Sep 2012

Insights Into Mrnp Biogenesis Provided By New Genetic Interactions Among Export And Transcription Factors, Francisco Estruch, Christine Hodge, Natalia Gómez-Navarro, Lorena Peiró-Chova, Catherine V. Heath, Charles N. Cole

Dartmouth Scholarship

The various steps of mRNP biogenesis (transcription, processing and export) are interconnected. It has been shown that the transcription machinery plays a pivotal role in mRNP assembly, since several mRNA export factors are recruited during transcription and physically interact with components of the transcription machinery. Although the shuttling DEAD-box protein Dbp5p is concentrated on the cytoplasmic fibrils of the NPC, previous studies demonstrated that it interacts physically and genetically with factors involved in transcription initiation. We investigated the effect of mutations affecting various components of the transcription initiation apparatus on the phenotypes of mRNA export mutant strains. Our results show …


Evidence For An Epigenetic Mechanism By Which Hsp90 Acts As A Capacitor For Morphological Evolution, Vincent E. Sollars, Xiangyi Lu, Li Xiao, Xiaoyan Wang, Mark D. Garfinkel, Douglas M. Ruden Aug 2012

Evidence For An Epigenetic Mechanism By Which Hsp90 Acts As A Capacitor For Morphological Evolution, Vincent E. Sollars, Xiangyi Lu, Li Xiao, Xiaoyan Wang, Mark D. Garfinkel, Douglas M. Ruden

Vincent E Sollars

Morphological alterations have been shown to occur in Drosophila melanogaster when function of Hsp90 (heat shock 0-kDa protein 1α, encoded by Hsp83) is compromised during development1. Genetic selection maintains the altered phenotypes in subsequent generations1. Recent experiments have shown, however, that phenotypic variation still occurs in nearly isogenic recombinant inbred strains of Arabidopsis thaliana2. Using a sensitized isogenic D. melanogaster strain, iso-KrIf-1, we confirm this finding and present evidence supporting an epigenetic mechanism for Hsp90’s capacitor function, whereby reduced activity of Hsp90 induces a heritably altered chromatin state. The altered chromatin state is evidenced by ectopic expression of the morphogen …


Mutation And Complementation Of A Cellulose Synthase (Cesa) Gene, Ahmed Y. El-Araby May 2012

Mutation And Complementation Of A Cellulose Synthase (Cesa) Gene, Ahmed Y. El-Araby

Senior Honors Projects

Cellulose is a carbohydrate polymer that is composed of repeating glucose subunits. Being the most abundant organic compound in the biosphere and comprising a large percentage of all plant biomass, cellulose is extremely plentiful and has a significant role in nature. Cellulose is present in plant cell walls, in commercial products such as those made from wood or cotton, and is of interest to the biofuel industry as a potential alternative fuel source. Although indigestible by humans, cellulose is nutritionally valuable, serving as a dietary fiber. Because of its ubiquity and importance in many areas, studying cellulose will prove to …


Characterization Of Novel Histone H2b Mutants Associated With Chromosome Segregation Defects In Saccharomyces Cerevisiae, Thiruchelvam Rajagopal May 2012

Characterization Of Novel Histone H2b Mutants Associated With Chromosome Segregation Defects In Saccharomyces Cerevisiae, Thiruchelvam Rajagopal

Graduate Theses and Dissertations

Histones are small basic proteins that associate with DNA to form the basic unit of chromatin, the nucleosome. Histones H3 and H4 form a tetramer that is bound by two H2A-H2B dimers to form the histone octamer, to which approximately 146 bp of DNA wrap around to form the nucleosome. High resolution structural information and recent advances in the understanding of histone post-translational modifications have illuminated the many regulatory functions chromatin exerts in the cell, from the transcriptional control of gene expression to chromosome segregation. However, the specific role that histones play in these processes is not well understood. Previous …


Digeorge Critical Region 8 (Dgcr8) Is A Double-Cysteine-Ligated Heme Protein., Ian Barr, Aaron T. Smith, Rachel Senturia, Yanqiu Chen, Brooke D. Scheidemantle, Judith N. Burstyn, Feng Guo May 2011

Digeorge Critical Region 8 (Dgcr8) Is A Double-Cysteine-Ligated Heme Protein., Ian Barr, Aaron T. Smith, Rachel Senturia, Yanqiu Chen, Brooke D. Scheidemantle, Judith N. Burstyn, Feng Guo

Natural Sciences and Mathematics | Faculty Scholarship

All known heme-thiolate proteins ligate the heme iron using one cysteine side chain. We previously found that DiGeorge Critical Region 8 (DGCR8), an essential microRNA processing factor, associates with heme of unknown redox state when overexpressed in Escherichia coli. On the basis of the similarity of the 450-nm Soret absorption peak of the DGCR8-heme complex to that of cytochrome P450 containing ferrous heme with CO bound, we identified cysteine 352 as a probable axial ligand in DGCR8. Here we further characterize the DGCR8-heme interaction using biochemical and spectroscopic methods. The DGCR8-heme complex is highly stable, with a half-life exceeding 4 …


Two Rotary Motors In F-Atp Synthase Are Elastically Coupled By A Flexible Rotor And A Stiff Stator Stalk., André Wächter, Yumin Bi, Stanley D Dunn, Brian D Cain, Hendrik Sielaff, Frank Wintermann, Siegfried Engelbrecht, Wolfgang Junge Mar 2011

Two Rotary Motors In F-Atp Synthase Are Elastically Coupled By A Flexible Rotor And A Stiff Stator Stalk., André Wächter, Yumin Bi, Stanley D Dunn, Brian D Cain, Hendrik Sielaff, Frank Wintermann, Siegfried Engelbrecht, Wolfgang Junge

Biochemistry Publications

ATP is synthesized by ATP synthase (F(O)F(1)-ATPase). Its rotary electromotor (F(O)) translocates protons (in some organisms sodium cations) and generates torque to drive the rotary chemical generator (F(1)). Elastic power transmission between F(O) and F(1) is essential for smoothing the cooperation of these stepping motors, thereby increasing their kinetic efficiency. A particularly compliant elastic domain is located on the central rotor (c(10-15)/ε/γ), right between the two sites of torque generation and consumption. The hinge on the active lever on subunit β adds further compliance. It is under contention whether or not the peripheral stalk (and the "stator" as a whole) …


Decreased Stability And Increased Formation Of Soluble Aggregates By Immature Superoxide Dismutase Do Not Account For Disease Severity In Als., Kenrick A Vassall, Helen R Stubbs, Heather A Primmer, Ming Sze Tong, Sarah M Sullivan, Ryan Sobering, Saipraveen Srinivasan, Lee-Ann K Briere, Stanley D Dunn, Wilfredo Colón, Elizabeth M Meiering Feb 2011

Decreased Stability And Increased Formation Of Soluble Aggregates By Immature Superoxide Dismutase Do Not Account For Disease Severity In Als., Kenrick A Vassall, Helen R Stubbs, Heather A Primmer, Ming Sze Tong, Sarah M Sullivan, Ryan Sobering, Saipraveen Srinivasan, Lee-Ann K Briere, Stanley D Dunn, Wilfredo Colón, Elizabeth M Meiering

Biochemistry Publications

Protein aggregation is a hallmark of many diseases, including amyotrophic lateral sclerosis (ALS), where aggregation of Cu/Zn superoxide dismutase (SOD1) is implicated in causing neurodegeneration. Recent studies have suggested that destabilization and aggregation of the most immature form of SOD1, the disulfide-reduced, unmetallated (apo) protein is particularly important in causing ALS. We report herein in depth analyses of the effects of chemically and structurally diverse ALS-associated mutations on the stability and aggregation of reduced apo SOD1. In contrast with previous studies, we find that various reduced apo SOD1 mutants undergo highly reversible thermal denaturation with little aggregation, enabling quantitative thermodynamic …


Biophysical Investigations Of The Molecular Basis Of Cataract Associated With The R76s Mutation In Human Gammad-Crystallin, Vurghun Ahmadov Jan 2011

Biophysical Investigations Of The Molecular Basis Of Cataract Associated With The R76s Mutation In Human Gammad-Crystallin, Vurghun Ahmadov

Legacy Theses & Dissertations (2009 - 2024)

Cataract disease results when the eye lens becomes opaque and scatters a significant part of the incoming light into the eye. The lens contains very high concentrations of the lens proteins, called crystallins, which are present at concentrations comparable to those found in protein crystals (about 400-600 mg/mL). Chemical modifications of the crystallins, such as oxidation and deamidation, or genetic mutations are known to result in increased light-scattering in vitro, and are implicated in cataract formation in vivo. Here we present the in vitro work on a mutant protein of human gammaD crystallin (HGD), namely R76S (i.e. Arg 76 to …


Physical Interaction Between Vivid And White Collar Complex Regulates Photoadaptation In Neurospora, Chen-Hui H. Chen, Bradley S. Demay, Amy S. Gladfelter, Jay Dunlap, Jennifer J. Loros Sep 2010

Physical Interaction Between Vivid And White Collar Complex Regulates Photoadaptation In Neurospora, Chen-Hui H. Chen, Bradley S. Demay, Amy S. Gladfelter, Jay Dunlap, Jennifer J. Loros

Dartmouth Scholarship

Photoadaptation, the ability to attenuate a light response on prolonged light exposure while remaining sensitive to escalating changes in light intensity, is essential for organisms to decipher time information appropriately, yet the underlying molecular mechanisms are poorly understood. In Neurospora crassa, VIVID (VVD), a small LOV domain containing blue-light photoreceptor protein, affects photoadaptation for most if not all light-responsive genes. We report that there is a physical interaction between VVD and the white collar complex (WCC), the primary blue-light photoreceptor and the transcription factor complex that initiates light-regulated transcriptional responses in Neurospora. Using two previously characterized VVD mutants, we show …


Genetic And Molecular Characterization Of A Cryptochrome From The Filamentous Fungus Neurospora Crassa, Allan C. Froehlich, Chen-Hui Chen, William J. Belden, Cornelia Madeti Mar 2010

Genetic And Molecular Characterization Of A Cryptochrome From The Filamentous Fungus Neurospora Crassa, Allan C. Froehlich, Chen-Hui Chen, William J. Belden, Cornelia Madeti

Dartmouth Scholarship

In plants and animals, cryptochromes function as either photoreceptors or circadian clock components. We have examined the cryptochrome from the filamentous fungus Neurospora crassa and demonstrate that Neurospora cry encodes a DASH-type cryptochrome that appears capable of binding flavin adenine dinucleotide (FAD) and methenyltetrahydrofolate (MTHF). The cry transcript and CRY protein levels are strongly induced by blue light in a wc-1-dependent manner, and cry transcript is circadianly regulated, with a peak abundance opposite in phase to frq. Neither deletion nor overexpression of cry appears to perturb the free-running circadian clock. However, cry disruption knockout mutants show a small phase delay …


Flagellar Formation In C-Ring-Defective Mutants By Overproduction Of Flii, The Atpase Specific For Flagellar Type Iii Secretion, Manabu Konishi, Masaomi Kanbe, Jonathan L. Mcmurry, Shin-Ichi Aizawa Oct 2009

Flagellar Formation In C-Ring-Defective Mutants By Overproduction Of Flii, The Atpase Specific For Flagellar Type Iii Secretion, Manabu Konishi, Masaomi Kanbe, Jonathan L. Mcmurry, Shin-Ichi Aizawa

Faculty and Research Publications

The flagellar cytoplasmic ring (C ring), which consists of three proteins, FliG, FliM, and FliN, is located on the cytoplasmic side of the flagellum. The C ring is a multifunctional structure necessary for flagellar protein secretion, torque generation, and switching of the rotational direction of the motor. The deletion of any one of the fliG, fliM, and fliN genes results in a Fla - phenotype. Here, we show that the overproduction of the flagellum-specific ATPase FliI overcomes the inability of basal bodies with partial C-ring structures to produce complete flagella. Flagella made upon FliI overproduction were paralyzed, indicating that an …


A Conserved Cam- And Radial Spoke–Associated Complex Mediates Regulation Of Flagellar Dynein Activity, Erin E. Dymek, Elizabeth F. Smith Nov 2007

A Conserved Cam- And Radial Spoke–Associated Complex Mediates Regulation Of Flagellar Dynein Activity, Erin E. Dymek, Elizabeth F. Smith

Dartmouth Scholarship

For virtually all cilia and eukaryotic flagella, the second messengers calcium and cyclic adenosine monophosphate are implicated in modulating dynein- driven microtubule sliding to regulate beating. Calmodulin (CaM) localizes to the axoneme and is a key calcium sensor involved in regulating motility. Using immunoprecipitation and mass spectrometry, we identify members of a CaM-containing complex that are involved in regulating dynein activity. This complex includes flagellar-associated protein 91 (FAP91), which shares considerable sequence similarity to AAT-1, a protein originally identified in testis as an A-kinase anchor protein (AKAP)- binding protein. FAP91 directly interacts with radial spoke protein 3 (an AKAP), which …