Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

PDF

Metabolism

Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 77

Full-Text Articles in Life Sciences

Predicting The Identities Of Su(Met-2) And Met-3 In Neurospora Crassa By Genome Resequencing, Kevin Mccluskey, Daren Brown, Erin Bredeweg, Scott E. Baker Feb 2024

Predicting The Identities Of Su(Met-2) And Met-3 In Neurospora Crassa By Genome Resequencing, Kevin Mccluskey, Daren Brown, Erin Bredeweg, Scott E. Baker

Fungal Genetics Reports

A significant number of classical genetic Neurospora crassa biochemical mutants remain anonymous, unassociated with a physical genome locus. By utilizing short read next-generation sequencing methods, it is possible to sequence the genomes of mutant strains rapidly and economically for the purpose of identifying genes associated with mutant phenotypes. We have taken this approach to connect genes and mutations to “methionineless” phenotypes in N. crassa.


The Effects Of Resistance Exercise Training On Insulin Resistance Development In Female Rodents With Type 1 Diabetes, Mitchell James Sammut Aug 2023

The Effects Of Resistance Exercise Training On Insulin Resistance Development In Female Rodents With Type 1 Diabetes, Mitchell James Sammut

Electronic Thesis and Dissertation Repository

The etiology of insulin resistance (IR) development in type 1 diabetes mellitus (T1DM) remains unclear; however, impaired skeletal muscle metabolism may play a role. While IR development has been established in male T1DM rodents, female rodents have yet to be examined in this context. Resistance exercise training (RT) has been shown to improve IR and is associated with a lower risk of hypoglycemia onset in T1DM compared to aerobic exercise. Additionally, the molecular mechanisms mediating RT-induced improvements in insulin sensitivity remain unclear. Therefore, the purpose of this study was to investigate the effects of RT on IR development in female …


Editorial: Rising Stars In Microbial Physiology And Metabolism: 2022, Nicole R. Buan, Ulrike Kappler Jul 2023

Editorial: Rising Stars In Microbial Physiology And Metabolism: 2022, Nicole R. Buan, Ulrike Kappler

Department of Biochemistry: Faculty Publications

This Research Topic was initiated to highlight work by young authors, the rising stars in the field of microbial physiology and metabolism. Microbial physiology and metabolism is an interdisciplinary field of research that seeks to uncover how the metabolic pathways of a cell work together to determine cell fate and function, whether that be growth, replication, pathogenicity, predation, respiration and fermentation, homeostasis or death. Ultimately, researchers like the ones featured here seek to integrate biological information and physicochemical parameters to try to find the underlying rules governing microbial function so that we can understand, predict and design microbes and microbial …


Mitochondrial Roles In Developmentally Programmed Heart Disease, Eli John Louwagie May 2023

Mitochondrial Roles In Developmentally Programmed Heart Disease, Eli John Louwagie

Dissertations and Theses

Offspring of diabetic and obese mothers (ODOM) have greater risks of heart disease at birth and later in life. However, prevention is hindered because underlying mechanisms are poorly understood. Mounting studies in the Developmental Origins of Health and Disease field suggest that mitochondria play key roles in developmentally programmed heart disease similar to the roles they play in cardiomyopathy in adults with diabetes and obesity. However, whether mitochondria are responsible for the short[1]and long-term cardiac disease seen in ODOM remains unknown. Here, we sought to delineate the roles of mitochondria in the hearts of ODOM, determine whether mitochondria are playing …


Investigating The Relationship Between Metabolic Reprogramming And Peripheral Cd4+ T-Cell Inflammation In Human Type 2 Diabetes Pathogenesis, Gabriella Kalantar Jan 2023

Investigating The Relationship Between Metabolic Reprogramming And Peripheral Cd4+ T-Cell Inflammation In Human Type 2 Diabetes Pathogenesis, Gabriella Kalantar

Theses and Dissertations--Microbiology, Immunology, and Molecular Genetics

Chronic, low-grade systemic inflammation rises in obesity and promotes type 2 diabetes (T2D). Circulating immune cells are key indicators of obesity and T2D pathogenesis. T cells outnumber monocytes, in blood, suggesting that T cells might fuel peripheral inflammation in obesity/T2D. Our lab’s work supports this idea by identification of a Th17 cytokine profile in T2D from T-cell stimulated peripheral blood mononuclear cells. Work described herein further supported this work by demonstrating that T cells dominate peripheral inflammation over monocytes across the spectrum of obesity and glycemic control. Our lab has also recently shown that inflammation changes during prediabetes (preT2D), identified …


Specialized Metabolism In Retina, Retinal Pigmented Epithelium, And Testis, Siyan Zhu Jan 2023

Specialized Metabolism In Retina, Retinal Pigmented Epithelium, And Testis, Siyan Zhu

Graduate Theses, Dissertations, and Problem Reports

The retina and its neighboring retinal pigmented epithelium (RPE) are high energy-demanding and metabolically active tissues with specialized and complementary metabolism. They are metabolically interdependent and impact each other’s viability. Interestingly, many of the metabolic features in the retina and RPE are shared with the testis. For example, testis is also energy costly due to continuous sperm differentiation and it has similar metabolic inter-dependence between different testis cells. Both the retina and testis are vulnerable to mitochondrial metabolic impairments.

We conducted three research projects to understand 1) the nutrient utilization and communication in retina and RPE; 2) The profiling of …


Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam Dec 2022

Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam

Dissertations & Theses (Open Access)

ANK2 mutations in patients are associated with numerous arrhythmias, cardiomyopathies, and other heart defects. In the heart, AnkB, the protein encoded by ANK2, clusters relevant ion channels and cell adhesion molecules in several important domains; however, its role at Mitochondria Associated ER/SR Membranes (MAMs) has yet to be investigated. MAMs are crucial to mitochondrial function and metabolism and are signaling hubs implicated in various cardiac pathologies. Among several functions, these sites mediate the direct transfer of calcium from the ER/SR to the mitochondria to modulate ATP synthesis. Given that mitochondrial function and energy production are paramount to cardiovascular heath, …


Metabolic Foundations Of Exercise-Induced Cardiac Growth., Kyle Fulghum Dec 2022

Metabolic Foundations Of Exercise-Induced Cardiac Growth., Kyle Fulghum

Electronic Theses and Dissertations

Regular aerobic exercise promotes physiological cardiac growth, which is an adaptive response thought to enable the heart to meet higher physical demands. Cardiac growth involves coordination of catabolic and anabolic activities to support ATP generation, macromolecule biosynthesis, and myocyte hypertrophy. Although previous studies suggest that exercise-induced reductions in cardiac glycolysis are critical for physiological myocyte hypertrophy, it remains unclear how exercise influences the many interlinked pathways of metabolism that support adaptive remodeling of the heart. In this thesis project, we tested the general hypothesis that aerobic exercise promotes physiological cardiac growth by coordinating myocardial metabolism to promote glucose-supported anabolic pathway …


Circadian Clock Controls Rhythms In Ketogenesis By Interfering With Ppar Alpha Transcriptional Network, Volha Mezhnina, Oghogho P. Ebeigbe, Nikkhil Velingkaar, Allan Poe, Yana I. Sandlers, Roman Kondratov Sep 2022

Circadian Clock Controls Rhythms In Ketogenesis By Interfering With Ppar Alpha Transcriptional Network, Volha Mezhnina, Oghogho P. Ebeigbe, Nikkhil Velingkaar, Allan Poe, Yana I. Sandlers, Roman Kondratov

Biological, Geological, and Environmental Faculty Publications

Ketone bodies are energy-rich metabolites and signaling molecules whose production is mainly regulated by diet. Caloric restriction (CR) is a dietary intervention that improves metabolism and extends longevity across the taxa. We found that CR induced high -amplitude daily rhythms in blood ketone bodies (beta-hydroxybutyrate [beta OHB]) that correlated with liver beta OHB level. Time-restricted feeding, another periodic fasting-based diet, also led to rhythmic beta OHB but with reduced amplitude. CR induced strong circadian rhythms in the expression of fatty acid oxidation and ketogenesis genes in the liver. The transcriptional factor peroxisome-proliferator-activated-receptor alpha (PPAR alpha) and its transcriptional target hepatokine …


Editorial: Mitochondria, Metabolism And Cardiovascular Diseases, Jun-Ichiro Koga, Xinghui Sun, Masuko Ushio-Fukai Aug 2022

Editorial: Mitochondria, Metabolism And Cardiovascular Diseases, Jun-Ichiro Koga, Xinghui Sun, Masuko Ushio-Fukai

Department of Biochemistry: Faculty Publications

No abstract provided.


Eluication Of Lipid Metabolic Pathways In Differentiating Giardia Lamblia Using High Resolution Mass Spectrometry, Cameron Ellis Aug 2022

Eluication Of Lipid Metabolic Pathways In Differentiating Giardia Lamblia Using High Resolution Mass Spectrometry, Cameron Ellis

Open Access Theses & Dissertations

Giardia lamblia is an intestinal protozoan found worldwide, including the U.S. This parasite exists in two morphologic stages - a replicative trophozoite and a relatively dormant yet viable cyst. While exposures of cysts to gastric acid during passage through the human stomach induces excystation, factors in the small intestine, where trophozoites colonize trigger encystation or cyst formation. Transformation into cyst stage is essential for Giardia to survive in the environment for months before infecting new hosts. Because of its small genome size (11.7 Mb), metabolic pathways in Giardia are highly reduced. As far as lipid metabolism is concerned, only limited …


The Regulation Of Atg9a-Mediated Aggrephagy By An Ulk1-Independent Atg13-Atg101 Complex, Joshua Youngs Jun 2022

The Regulation Of Atg9a-Mediated Aggrephagy By An Ulk1-Independent Atg13-Atg101 Complex, Joshua Youngs

Undergraduate Honors Theses

Aggrephagy, a type of autophagy, is an essential cellular process by which protein aggregates are collected and broken down in the lysosome. Protein aggregates are implicated in several diseases including Alzheimer’s disease, diabetes, and cancer. Here, we investigate the ATG13-ATG101 protein complex, a sub-complex of the canonical ULK1 complex whose regulatory role in aggrephagy is not completely understood. We also develop a protein fragment complementation (PFC) assay using the biotin ligase TurboID to study the functions of the ATG13-ATG101 complex with increased specificity. We demonstrate that ATG13 is required for optimal degradation of p62-ubiquitin condensates. We also show that a …


Severe Hypoxia Up-Regulates Gluconeogenesis In Daphnia, Morad C. Malek May 2022

Severe Hypoxia Up-Regulates Gluconeogenesis In Daphnia, Morad C. Malek

Undergraduate Honors Theses

Hypoxia is a significant low oxygen state that has complex and diverse impacts on organisms. In aerobes, various adaptive responses to hypoxia are observed that vary depending on the level of oxygen depletion and previous adaptation, hence the continued attention to hypoxia as an important abiotic stressor. Adaptive responses to hypoxia are primarily governed by the hypoxia-inducible factors (HIFs), which activate downstream genetic pathways responsible for oxygen transport and metabolic plasticity. In aquatic habitats, oxygen availability can vary greatly over time and space. Therefore, aquatic organisms’ adaptation to hypoxia is likely pervasive, especially in genotypes originating from waterbodies prone to …


An Investigation Into The Roles Of Aldose Reductase And Acetate Kinase In The Metabolism Of Entamoeba Histolytica, Matthew B. Angel May 2022

An Investigation Into The Roles Of Aldose Reductase And Acetate Kinase In The Metabolism Of Entamoeba Histolytica, Matthew B. Angel

All Dissertations

Entamoeba histolytica is an amoebic parasite that infects an estimated 90 million people worldwide and causes approximately 100,000 deaths per year. As the causative agent of amoebic dysentery, this food- and water-borne pathogen represents a significant public health burden worldwide, particularly in areas with poor sanitation. While treatments for amoebiasis exist, they are often limited in their effectiveness. Thus, efforts to better understand the biology and physiology of this organism are vital to the development of novel treatments for this disease.

E. histolytica lacks the enzymes for many common metabolic pathways such as the citric acid cycle and oxidative phosphorylation …


Metabolic Synergy Between Human Symbionts Bacteroides And Methanobrevibacter, Jennie L. Catlett, Sean Carr, Mikaela Cashman, Megan D. Smith, Mary Walter, Zahmeeth Sakkaff, Christine A. Kelley, Massimiliano Pierobon, Myra B. Cohen, Nicole R. Buan Jan 2022

Metabolic Synergy Between Human Symbionts Bacteroides And Methanobrevibacter, Jennie L. Catlett, Sean Carr, Mikaela Cashman, Megan D. Smith, Mary Walter, Zahmeeth Sakkaff, Christine A. Kelley, Massimiliano Pierobon, Myra B. Cohen, Nicole R. Buan

Department of Biochemistry: Faculty Publications

ABSTRACT Trophic interactions between microbes are postulated to determine whether a host microbiome is healthy or causes predisposition to disease. Two abundant taxa, the Gram-negative heterotrophic bacterium Bacteroides thetaiotaomicron and the methanogenic archaeon Methanobrevibacter smithii, are proposed to have a synergistic metabolic relationship. Both organisms play vital roles in human gut health; B. thetaiotaomicron assists the host by fermenting dietary polysaccharides, whereas M. smithii consumes end-stage fermentation products and is hypothesized to relieve feedback inhibition of upstream microbes such as B. thetaiotaomicron. To study their metabolic interactions, we defined and optimized a coculture system and used software testing …


Arginine Catabolism And Polyamine Biosynthesis Pathway Disparities Within Francisella Tularensis Subpopulations, Yinshi Yue, Bhanwar Lal Puniya, Tomáš Helikar, Benjamin Girardo, Steven H. Hinrichs, Marilyn A. Larson Jan 2022

Arginine Catabolism And Polyamine Biosynthesis Pathway Disparities Within Francisella Tularensis Subpopulations, Yinshi Yue, Bhanwar Lal Puniya, Tomáš Helikar, Benjamin Girardo, Steven H. Hinrichs, Marilyn A. Larson

Department of Biochemistry: Faculty Publications

Francisella tularensis is a highly infectious zoonotic pathogen with as few as 10 organisms causing tularemia, a disease that is fatal if untreated. Although F. tularensis subspecies tularensis (type A) and subspecies holarctica (type B) share over 99.5% average nucleotide identity, notable differences exist in genomic organization and pathogenicity. The type A clade has been further divided into subtypes A.I and A.II, with A.I strains being recognized as some of the most virulent bacterial pathogens known. In this study, we report on major disparities that exist between the F. tularensis subpopulations in arginine catabolism and subsequent polyamine biosynthesis. The genes …


Characterization And Manipulation Of O-Glcnacylation In Granulosa Cells Of Bovine Ovarian Antral Follicles, Abigail Marie Maucieri Jan 2022

Characterization And Manipulation Of O-Glcnacylation In Granulosa Cells Of Bovine Ovarian Antral Follicles, Abigail Marie Maucieri

Graduate College Dissertations and Theses

Glucose is widely recognized as the preferred energy substrate for metabolism by granulosa cells (GCs). Yet in most cells, 2-5% of glucose is shunted through the hexosamine biosynthesis pathway (HBP) for O-linked N-acetylglucosaminylation (O-GlcNAcylation). O-GlcNAcylation is an evolutionarily-conserved, post-translational process that modifies serine and threonine residues on a variety of proteins. O-GlcNAcylation is also considered a nutrient sensor that can regulate cellular processes such as metabolism, signal transduction, and proliferation. In this respect, O-GlcNAcylation may be similar to, and possibly mediate, AMP-activated protein kinase (AMPK) signaling and its nutrient-sensing actions. However, the occurrence of O-GlcNAcylation and its relative importance to …


The Regulation Of Plasmodium Falciparum Metabolism By Haloacid Dehalogenase Proteins, Philip Frasse Aug 2021

The Regulation Of Plasmodium Falciparum Metabolism By Haloacid Dehalogenase Proteins, Philip Frasse

Arts & Sciences Electronic Theses and Dissertations

Malaria is an enormous financial and public health burden for much of the world, infecting over 200 million and killing over 400,000 people every year. While much progress has been made combating malaria in the past few decades, those advances have slowed in recent years, partially due to the emergence of resistance to all known antimalarials used to date. To achieve the goal of eliminating malaria as a major global health problem, new therapeutics need to be developed, targeting novel categories of parasite biology. One poorly understood area of parasite biology is the regulation of various metabolic pathways. We have …


Link Between Muscle And Whole-Body Energetic Responses To Exercise, Christopher M.T. Hayden Jul 2021

Link Between Muscle And Whole-Body Energetic Responses To Exercise, Christopher M.T. Hayden

Masters Theses

Substantial evidence exists regarding how skeletal muscles use energy and how this affects muscular performance. What remains unclear is how characteristics of muscle energetics affect whole-body energetics during daily living, and what effects this may have on mobility. The goal of this study was to determine the associations between muscle and whole-body energetics including the relationships between: 1) muscle PCr depletion (∆PCr) in response to light intensity isotonic contractions and the oxygen deficit at the onset of a 30-min treadmill walk (30MTW), and, 2) muscle oxidative capacity and excess post-exercise oxygen consumption (EPOC; 30MTW), respiratory exchange ratio (RER; 30MTW), and …


Characterization And Modulatory Influence Of Pyruvate Kinase Muscle Isoforms 1 And 2 Within The Murine Pluripotent Continuum, Joshua G. Dierolf Jun 2021

Characterization And Modulatory Influence Of Pyruvate Kinase Muscle Isoforms 1 And 2 Within The Murine Pluripotent Continuum, Joshua G. Dierolf

Electronic Thesis and Dissertation Repository

Mouse embryonic stem cells (mESCs) and mouse epiblast stem cells (mEpiSCs) represent opposite ends of a pluripotency continuum, respectively referred to as naïve and primed pluripotent states. A third, recently discovered intermediate state has been described as the ‘formative state’. Metabolism has been traditionally regarded as a by-product of cell fate; however, recent evidence now supports metabolism as promoting stem cell fate. Pyruvate kinase muscle isoforms 1 and 2 (PKM1 and PKM2) catalyze the final, rate limiting step of glycolysis generating adenosine triphosphate (ATP) and pyruvate; however, the precise role(s) of these isozymes in naïve, formative, and primed pluripotency is …


Investigating A Novel Function For Phosphoserine Aminotransferase 1 (Psat1) In Epidermal Growth Factor Receptor (Egfr)-Mediated Lung Tumorigenesis., Rumeysa Biyik-Sit May 2021

Investigating A Novel Function For Phosphoserine Aminotransferase 1 (Psat1) In Epidermal Growth Factor Receptor (Egfr)-Mediated Lung Tumorigenesis., Rumeysa Biyik-Sit

Electronic Theses and Dissertations

Phosphoserine aminotransferase 1 (PSAT1) catalyzes the second enzymatic step within the serine synthetic pathway (SSP) and its expression is elevated in numerous human cancers, including non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) mutant NSCLC is characterized by activating mutations within its tyrosine kinase domain and accounts for 17% of lung adenocarcinomas. Although elevated SSP activity has been observed in EGFR-mutant lung cancer cells, the involvement of PSAT1 in EGFR-mediated oncogenesis is still unclear. Here, we explore a putative non-canonical function for PSAT1 using biochemical approaches to elucidate unknown interacting proteins and genomic RNA-seq profiling to identify cellular …


Elucidating The Effects Of Glucose Toxicity On Tauopathy And Aging, Lukas Fluitt May 2020

Elucidating The Effects Of Glucose Toxicity On Tauopathy And Aging, Lukas Fluitt

Natural Sciences and Mathematics | Biological Sciences Master's Theses

Diabetes patients are at higher risk of contracting an age-related neurodegenerative disease such as Alzheimer’s disease (AD). However, the mechanisms which link these diseases are poorly understood. We hypothesize that glucose and elevated levels of the glycolysis by product advanced glycation end-products (AGEs), may be involved. AGEs accumulate with age and are elevated in both diabetic and AD patients. Diabetes is a metabolic disorder for which consumption of sugar-rich diets is a major risk factor and is central to etiology in the vast majority of cases.

We show that transgenic C. elegans expressing wild type (WT) human tau fed a …


Glucose Metabolism Of Breast Cancer Sub-Clones That Preferentially Metastasize To The Lungs And Bone, Anna G. Skubiz May 2020

Glucose Metabolism Of Breast Cancer Sub-Clones That Preferentially Metastasize To The Lungs And Bone, Anna G. Skubiz

Honors Theses

Malignant breast cancers exhibit preferential metastasis to bone and lung (1). While changes in gene expression in lung-specific (LM) and bone-specific metastasis (BoM) lines derived from the MDA-MB-231 breast cancer line have been identified, few metabolic genes are differentially expressed; thus it is unknown if tissue-specific metabolic reprogramming occurs. Two hallmarks of cancer cells are an altered metabolic phenotype characterized by enhanced conversion of glucose to lactate in spite of adequate oxygen availability for complete mitochondrial oxidation of this substrate (referred to as aerobic glycolysis or the Warburg effect) and a greater dependence on glutamine. These changes in primary tumor …


The Retinoblastoma Protein Mediates Metabolic Reprogramming In Lung Cancer., Lindsey R. Conroy May 2020

The Retinoblastoma Protein Mediates Metabolic Reprogramming In Lung Cancer., Lindsey R. Conroy

Electronic Theses and Dissertations

Lung cancer is among the most frequently diagnosed cancers and is the leading cause of cancer-related deaths worldwide. One of the hallmark events in lung cancer pathogenesis is deregulation of the cell cycle. The retinoblastoma protein (pRb) is a tumor suppressor that is deleted, mutated, or inactivated in most lung cancer cases. Canonically, pRb functions to regulate cell cycle progression by repressing the transcriptional activity of the E2F family of transcription factors, inhibiting S phase entry. Although the cell cycle functions of pRb have been well established, recent studies have highlighted a functional role for pRb in controlling cellular metabolism. …


Comparative Analysis Of The Human Serine Hydrolase Ovca2 To The Model Serine Hydrolase Homolog Fsh1 From S. Cerevisiae, Jessica S. Bun, Michael D. Slack, Daniel E. Schemenauer, R. Jeremy Johnson Mar 2020

Comparative Analysis Of The Human Serine Hydrolase Ovca2 To The Model Serine Hydrolase Homolog Fsh1 From S. Cerevisiae, Jessica S. Bun, Michael D. Slack, Daniel E. Schemenauer, R. Jeremy Johnson

Scholarship and Professional Work - LAS

Over 100 metabolic serine hydrolases are present in humans with confirmed functions in metabolism, immune response, and neurotransmission. Among potentially clinically relevant but uncharacterized human serine hydrolases is OVCA2, a serine hydrolase that has been linked with a variety of cancer-related processes. Herein, we developed a heterologous expression system for OVCA2 and determined the comprehensive substrate specificity of OVCA2 against two ester substrate libraries. Based on this analysis, OVCA2 was confirmed as a serine hydrolase with a strong preference for long-chain alkyl ester substrates (>10-carbons) and high selectivity against a variety of short, branched, and substituted esters. Substitutional analysis …


Metabolic Feedback Inhibition Influences Metabolite Secretion By The Human Gut Symbiont Bacteroides Thetaiotaomicron, Jennie L. Catlett, Jonathan Catazaro, Mikaela Cashman, Sean Carr, Robert Powers, Myra B. Cohen, Nicole R. Buan Jan 2020

Metabolic Feedback Inhibition Influences Metabolite Secretion By The Human Gut Symbiont Bacteroides Thetaiotaomicron, Jennie L. Catlett, Jonathan Catazaro, Mikaela Cashman, Sean Carr, Robert Powers, Myra B. Cohen, Nicole R. Buan

Department of Biochemistry: Faculty Publications

Microbial metabolism and trophic interactions between microbes give rise to complex multispecies communities in microbe-host systems. Bacteroides thetaiotaomicron (B. theta) is a human gut symbiont thought to play an important role in maintaining host health. Untargeted nuclear magnetic resonance metabolomics revealed B. theta secretes specific organic acids and amino acids in defined minimal medium. Physiological concentrations of acetate and formate found in the human intestinal tract were shown to cause dose-dependent changes in secretion of metabolites known to play roles in host nutrition and pathogenesis. While secretion fluxes varied, biomass yield was unchanged, suggesting feedback inhibition does not affect metabolic …


Xenobiotic Exposure Requires Mitochondrial Metabolism For Redox Homeostasis And Survival In Astrocytes, Jordan Rose Dec 2019

Xenobiotic Exposure Requires Mitochondrial Metabolism For Redox Homeostasis And Survival In Astrocytes, Jordan Rose

Department of Biochemistry: Dissertations, Theses, and Student Research

Astrocytes are integral components of glutamatergic neurotransmission, providing essential metabolic processes for neuronal homeostasis and acting as the first line of defense against xenobiotics crossing the blood brain barrier. Arsenic is a xenobiotic with widespread natural and industrial prevalence, and has been linked to impaired neurodevelopment and neuronal death. Given the integrated metabolic nature of astrocytes and neurons, we sought to explore how arsenic impacts astrocyte metabolism in order to better understand the mechanisms of xenobiotic toxicity in the mammalian brain.

We demonstrate that astrocyte viability depends upon de novoglutathione (GSH) synthesis during arsenic exposure, and sub-lethal arsenic exposure …


The Effects Of Inulin And Galactooligosaccharides On The Production Of Reuterin By Lactobacillus Reuteri, Micah Dwight Forshee Dec 2018

The Effects Of Inulin And Galactooligosaccharides On The Production Of Reuterin By Lactobacillus Reuteri, Micah Dwight Forshee

ELAIA

The microbiome is a dynamic community that can positively and negatively influence host health. Lactobacillus reuteri is a probiotic that has received much attention for its ability to inhibit pathogens such as Salmonella typhimurium, Escherichia coli, and Clostridium difficile. It does so by its unique ability to metabolize glycerol into the antimicrobial compound 3-HPA, which is commonly referred to as reuterin. The ability to secrete reuterin is dependent not only on glycerol availability but also the concentration of glucose. In fact, there appears to be a “goldilocks” ratio between glucose and glycerol as either too much or too little …


Impact Of San-Mediated Signaling On Glioblastoma And Neuroblastoma Metabolism, Monica Rodriguez Silva Jun 2018

Impact Of San-Mediated Signaling On Glioblastoma And Neuroblastoma Metabolism, Monica Rodriguez Silva

FIU Electronic Theses and Dissertations

Glioblastoma (GBM) is the most common and aggressive type of brain cancer, with an average life expectancy of 15 months. The standard of care for GBM, surgery accompanied by radiation and chemotherapy (temozolomide-TMZ), has not changed in over 10 years illustrating the need for new and efficacious treatments. Therefore, it is imperative to improve our knowledge of GBM physiology to understand the mechanisms driving recurrence and chemoresistance so that more effective therapeutic options can be developed. Mitochondria-cell communication is key to monitor and maintain both mitochondrial and cellular health, and signaling events on the outer mitochondrial membrane (OMM) have emerged …


The Effects Of Inulin And Galactooligosaccharides On The Production Of Reuterin By Lactobacillus Reuteri, Micah Forshee Apr 2018

The Effects Of Inulin And Galactooligosaccharides On The Production Of Reuterin By Lactobacillus Reuteri, Micah Forshee

Scholar Week 2016 - present

The microbiome is a dynamic community that can positively and negatively influence host health. Lactobacillus reuteri is a probiotic that has received much attention for its ability to inhibit pathogens such as Salmonella Typhimurium, Escherichia coli, and Clostridium difficile. It does so by its unique ability to metabolize glycerol into the antimicrobial compound 3-HPA, which is commonly referred to as reuterin. The ability to secrete reuterin is dependent not only on glycerol availability but also the concentration of glucose. In fact, there appears to be a “goldilocks” ratio between glucose and glycerol as either too much or too …