Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

PDF

2022

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 373

Full-Text Articles in Life Sciences

Interactions Of Amyloid Peptides With Lipid Membranes, Yanxing Yang Dec 2022

Interactions Of Amyloid Peptides With Lipid Membranes, Yanxing Yang

Dissertations

The aggregation of amyloid proteins into fibrils is a hallmark of several diseases including Alzheimer’s (AD), Parkinson’s, and Type II diabetes. This aggregation process involves the formation of small size oligomers preceding the formation of insoluble fibrils. Recent studies have shown that these oligomers are more likely to be responsible for cell toxicity than fibrils. A possible mechanism of toxicity involves the interaction of oligomers with the cell membrane compromising its integrity. In particular, oligomers may form pore-like structures in the cell membrane affecting its permeability or they may induce lipid loss via a detergent-like effect. This dissertation aims to …


Angiogenic Supports For Microvascular Engineering, Zain Siddiqui Dec 2022

Angiogenic Supports For Microvascular Engineering, Zain Siddiqui

Dissertations

Ischemic tissue disease is caused by a lack of circulation / blood supply to tissue. This can be treated by introducing a number of angiogenic (pro-blood vessel forming) factors into the tissue. This work presents strategies for ischemic tissue treatment utilizing a novel proangiogenic self-assembling peptide hydrogel platform. To demonstrate the utility of this platform, its use alone as an angiogenic therapeutic (both alone as a self-assembling hydrogel and with two-component systems), and its ability to vascularize implants is explored. Due to these angiogenic scaffolds demonstrating efficacy to regenerate microvasculature, this work evaluates diseases that can be treated by the …


Production Of Biofuel Using Magnetic Nanocatalyst Zno-Ni0.5zn0.5fe2o4-Fe2o3: A Mini-Review Of Recent Studies, Nida Ziafat Miss, Majid Mahmood Dec 2022

Production Of Biofuel Using Magnetic Nanocatalyst Zno-Ni0.5zn0.5fe2o4-Fe2o3: A Mini-Review Of Recent Studies, Nida Ziafat Miss, Majid Mahmood

Journal of Bioresource Management

As conventional fossil fuels are becoming limited, it is critical to find alternative clean and renewable energy sources. Biodiesel is a degradable and renewable form of fuel made up of long-chain fatty acid esters that can be generated from either plants or animals. It is a mixture of long-chain alkyl esters made through a transesterification reaction with alcohol and catalyst. Due to the high cost of petroleum, the concept of biofuel production as an alternative source has increased in recent years. The present mini-review summarizes some recent studies on alternative methods for the production of biofuel. The review concludes that …


Hiv-Tat Exacerbates The Actions Of Atazanavir, Efavirenz, And Ritonavir On Cardiac Ryanodine Receptor (Ryr2), Imam Abdulrahman Bin Faisal University, Chengju Tian, Sean R. Bidasee, Zachary L. Venn, Evan Schroder, Nick Y. Palermo, Mohammad Alshabeeb, Benson J. Edagwa, Jason J. Payne, Keshoer R. Bidasee Dec 2022

Hiv-Tat Exacerbates The Actions Of Atazanavir, Efavirenz, And Ritonavir On Cardiac Ryanodine Receptor (Ryr2), Imam Abdulrahman Bin Faisal University, Chengju Tian, Sean R. Bidasee, Zachary L. Venn, Evan Schroder, Nick Y. Palermo, Mohammad Alshabeeb, Benson J. Edagwa, Jason J. Payne, Keshoer R. Bidasee

Department of Biochemistry: Faculty Publications

The incidence of sudden cardiac death (SCD) in people living with HIV infection (PLWH), especially those with inadequate viral suppression, is high and the reasons for this remain incompletely characterized. The timely opening and closing of type 2 ryanodine receptor (RyR2) is critical for ensuring rhythmic cardiac contraction–relaxation cycles, and the disruption of these processes can elicit Ca2+ waves, ventricular arrhythmias, and SCD. Herein, we show that the HIV protein Tat (HIVTat: 0–52 ng/mL) and therapeutic levels of the antiretroviral drugs atazanavir (ATV: 0–25,344 ng/mL), efavirenz (EFV: 0–11,376 ng/mL), and ritonavir (RTV: 0–25,956 ng/mL) bind to and modulate the …


Therapies For Mitochondrial Disorders, Kayli Sousa Smyth, Anne Mulvihill Dec 2022

Therapies For Mitochondrial Disorders, Kayli Sousa Smyth, Anne Mulvihill

SURE Journal: Science Undergraduate Research Experience Journal

Mitochondria are cytoplasmic, double-membrane organelles that synthesise adenosine triphosphate (ATP). Mitochondria contain their own genome, mitochondrial DNA (mtDNA), which is maternally inherited from the oocyte. Mitochondrial proteins are encoded by either nuclear DNA (nDNA) or mtDNA, and both code for proteins forming the mitochondrial oxidative phosphorylation (OXPHOS) complexes of the respiratory chain. These complexes form a chain that allows the passage of electrons down the electron transport chain (ETC) through a proton motive force, creating ATP from adenosine diphosphate (ADP). This study aims to explore current and prospective therapies for mitochondrial disorders (MTDS). MTDS are clinical syndromes coupled with abnormalities …


Compatibility Of Crude Oil Blends─Processing Issues Related To Asphaltene Precipitation, Methods Of Instability Prediction─A Review, Krzysztof Bambinek, Andrzej Przyjazny, Grzegorz Boczkaj Dec 2022

Compatibility Of Crude Oil Blends─Processing Issues Related To Asphaltene Precipitation, Methods Of Instability Prediction─A Review, Krzysztof Bambinek, Andrzej Przyjazny, Grzegorz Boczkaj

Natural Sciences Publications

Processing crude oil of variable composition, especially due to the need to process crude oil blends obtained from various sources, presents a tremendous process challenge. This is mainly due to the destabilization of the colloidal system manifested mostly by the precipitation of the asphaltene fraction. The precipitation of asphaltenes from crude oil is a serious problem during extraction, transport, and processing. In the latter case, engineers and scientists have spent a lot of time determining what mechanisms are conducive to the occurrence of this phenomenon. On the one hand, there was a scientific curiosity about the principles of the nanoworld …


Arginine Methylation Of The Pgc-1Α C‑Terminus Is Temperature- Dependent, Meryl Mendoz, Mariel Mendoza, Tiffany Lubrino, Sidney Briski, Immaculeta Osuji, Janielle Cuala, Brendan Ly, Ivan Ocegueda, Harvey Peralta, Benjamin A. Garcia, Cecilia Zurita-Lopez Dec 2022

Arginine Methylation Of The Pgc-1Α C‑Terminus Is Temperature- Dependent, Meryl Mendoz, Mariel Mendoza, Tiffany Lubrino, Sidney Briski, Immaculeta Osuji, Janielle Cuala, Brendan Ly, Ivan Ocegueda, Harvey Peralta, Benjamin A. Garcia, Cecilia Zurita-Lopez

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We set out to determine whether the C-terminus (amino acids 481–798) of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α, UniProt Q9UBK2), a regulatory metabolic protein involved in mitochondrial biogenesis, and respiration, is an arginine methyltransferase substrate. Arginine methylation by protein arginine methyltransferases (PRMTs) alters protein function and thus contributes to various cellular processes. In addition to confirming methylation of the C-terminus by PRMT1 as described in the literature, we have identified methylation by another member of the PRMT family, PRMT7. We performed in vitro methylation reactions using recombinant mammalian PRMT7 and PRMT1 at 37, 30, 21, 18, and 4 °C. …


Quantum Computations And Molecular Dynamics Simulations: From The Fundamentals Of Antimicrobial Resistance To Neurological Diseases, Angel Tamez Dec 2022

Quantum Computations And Molecular Dynamics Simulations: From The Fundamentals Of Antimicrobial Resistance To Neurological Diseases, Angel Tamez

Electronic Theses and Dissertations

Biophysical phenomena are modeled using a combination of quantum and classical methods to interpret and supplement three distinct and diverse problems in this dissertation. In the first project, decarboxylation reactions are ubiquitous across chemical and biological disciplines, yet the origin of non-catalytic solvent effects remains elusive. Specific solvent structure and energetics have not been well described for the monoanion of malonate, nor corrected from the gas-phase charge-assisted intramolecular hydrogen bond model known as “pseudochair”. In the aqueous phase, a low-lying energy conformer known as the “orthogonal conformation” is computed to be preferred by a three-water cluster of hydrogen bonding over …


Metoprolol Disrupts Sterol Biosynthesis Through Inhibition Of 7-Dehydrocholesterol Reductase (Dhcr7), Luke B. Allen Dec 2022

Metoprolol Disrupts Sterol Biosynthesis Through Inhibition Of 7-Dehydrocholesterol Reductase (Dhcr7), Luke B. Allen

Theses & Dissertations

Cholesterol is essential for life. It is particularly important in the brain as it relies on de novo synthesis of cholesterol following the formation of the blood brain barrier (BBB). As such, disrupting sterol biosynthesis during neurodevelopment can have devastating outcomes. The most common post-lanosterol sterol biosynthesis disorder, Smith-Lemli-Opitz Syndrome, arises from a faulty DHCR7 enzyme. DHCR7 has also been shown to be inhibited by several psychotropic medications. Here we assess six beta-blockers and their effects on sterol biosynthesis in vitro. Two beta-blockers, metoprolol and nebivolol strongly inhibit DHCR7 in four separate in vitro models of both mouse and …


The Role Of Parkin In Mitochondrial Dna, Eliezer Lichter Dec 2022

The Role Of Parkin In Mitochondrial Dna, Eliezer Lichter

Theses & Dissertations

Mitochondria are at the center of biological phenomena such as aging and diseases, especially neurodegenerative diseases. While the discovery of mitochondria only came approximately 200 years after the cell was discovered, a lot of progress has been made since. The mitochondrial genome encodes proteins vital for mitochondrial function. These proteins are only a subset of the proteins present in mitochondria; the rest are nuclear encoded. The nucleus also encodes cytosolic proteins vital for mitochondrial maintenance. One of these is Parkin, an E3 ubiquitin ligase that ubiquitinates mitochondrial proteins as mitochondria become depolarized. Its activity has been shown to be involved …


Insights Into The Biotechnology Potential Of Methanosarcina, Sean Carr, Nicole R. Buan Dec 2022

Insights Into The Biotechnology Potential Of Methanosarcina, Sean Carr, Nicole R. Buan

Department of Biochemistry: Faculty Publications

Methanogens are anaerobic archaea which conserve energy by producing methane. Found in nearly every anaerobic environment on earth, methanogens serve important roles in ecology as key organisms of the global carbon cycle, and in industry as a source of renewable biofuels. Environmentally, methanogenic archaea play an essential role in the reintroducing unavailable carbon to the carbon cycle by anaerobically converting low-energy, terminal metabolic degradation products such as one and two-carbon molecules into methane which then returns to the aerobic portion of the carbon cycle. In industry, methanogens are commonly used as an inexpensive source of renewable biofuels as well as …


Nanoparticle Conjugated Photosensitizer For Targeted Photodynamic Inactivation Of Cancer Cells, Symone D. Crowder Dec 2022

Nanoparticle Conjugated Photosensitizer For Targeted Photodynamic Inactivation Of Cancer Cells, Symone D. Crowder

Honors College Theses

Photodynamic therapy (PDT) is considered to be a potential replacement for traditional methods of chemotherapy. It includes the administration of photosensitizing agents (PS), which generate reactive oxygen species (ROS) upon excitation at a specific wavelength. With new outlooks and techniques, cancer research is advancing each day. It has allowed the progress of several theranostic drug delivery systems (DDS) exploring the area of nanomedicine.2 In the present work, a Rhodamine derivative, Rhodamine 6G (R6G) was used as the PS. In general, rhodamine compounds undergo cytotoxic reactions on photoexcitation by electron transfer reactions with folic acid within cells, making them a favorable …


A Universal Mechanism Of G Protein Inhibition, Tyson Daniel Todd Dec 2022

A Universal Mechanism Of G Protein Inhibition, Tyson Daniel Todd

Arts & Sciences Electronic Theses and Dissertations

G protein coupled receptors transduce a truly staggering number of diverse extracellular signals including chemical messengers, physical force, and even photons into specific cellular responses through their coupling to heterotrimeric G proteins. G proteins amplify the originating signal through their binding to downstream effectors, activating a complex network of overlapping responses that allow the cell to respond perfectly to that specific stimulus. It is critical to the cell that this process is carried out faithfully in order to respond to the myriad environmental cues and avoid injury, exhaustion, and death for the individual cell or the development of pathology if …


A Structural Perspective On Neutralizing Antibodies To Flaviviruses And Coronaviruses, John Michael Errico Dec 2022

A Structural Perspective On Neutralizing Antibodies To Flaviviruses And Coronaviruses, John Michael Errico

Arts & Sciences Electronic Theses and Dissertations

The presence of neutralizing antibodies typically correlates strongly with protection from infection, particularly for RNA viruses; elicitation of neutralizing antibody responses is thus the primary goal of most vaccines, and monoclonal antibodies (mAbs) can be leveraged as potent therapeutics. Thus, understanding the properties of individual antibodies that comprise polyclonal antibody responses and their epitopes is essential for countermeasure design. In this dissertation, I explore the epitopes and functional properties of monoclonal antibodies targeting the structural proteins of two families of RNA viruses, flaviviruses and coronaviruses.

Flaviviruses are globally distributed arthropod-borne positive-sense RNA viruses transmitted primarily by either mosquitos or ticks. …


Bis-Indolyl Compounds And The Induction Of Apoptosis In T98g Glioblastoma Multiforme Cells, Margot C. Brown Dec 2022

Bis-Indolyl Compounds And The Induction Of Apoptosis In T98g Glioblastoma Multiforme Cells, Margot C. Brown

Seton Hall University Dissertations and Theses (ETDs)

1,1-bis(3’idolyl)-1(aryl)methane compounds (BIM compounds) have been shown to have anti-cancer properties in colon cancer, bladder cancer, and leukemia cells. The purpose of this work was to determine if BIM compounds could be an effective treatment of glioblastoma multiforme. Sulforhodamine B (SRB) assays showed that 20µM of the BIM compounds could inhibit cellular proliferation of the T98G glioblastoma multiforme cell line over 72 hours. Then immunoblotting was used to analyze the molecular pathway induced by BIM compounds. An increase in the expression of both BAX and cleaved caspase 3 suggest BIM compounds activate programmed cell death, or apoptosis in glioblastoma cells. …


Dynamics Of Redox-Driven Molecular Processes In Local And Systemic Plant Immunity, Philip Berg Dec 2022

Dynamics Of Redox-Driven Molecular Processes In Local And Systemic Plant Immunity, Philip Berg

Theses and Dissertations

The work here presents two main parts. In the first part, chapters 1 – 3 focus on dynamical systems modeling in plant immunity, whereas chapters 4 – 6 describe contributions to computational modeling and analysis of proteomics and genomics data. Chapter 1 investigates dynamical and biochemical patterns of reversibly oxidized cysteines (RevOxCys) during effector-triggered immunity (ETI) in Arabidopsis, examines the regulatory patterns associated with Arabidopsis thimet oligopeptidase 1 and 2’s (TOP1 and TOP2), roles in the RevOxCys events during ETI, and analyzes the redox phenotype of the top1top2 mutant. The second chapter investigates the peptidome dynamics during ETI …


Molecular Basis Of Viroid Rna-Templated Transcription, Shachinthaka D. Dissanayaka Mudiyanselage Dec 2022

Molecular Basis Of Viroid Rna-Templated Transcription, Shachinthaka D. Dissanayaka Mudiyanselage

Theses and Dissertations

Transcription is a fundamental process catalyzed by DNA-dependent RNA polymerases (DdRPs). Interestingly, some DdRPs can use both DNA and RNA as templates for transcription. This RNA-dependent RNA polymerase (RdRP) activity of DdRPs is used by RNA-based pathogens such as viroids and hepatitis delta virus for replication. In addition, RdRP activity of DdRPs widely occurs in various organisms to regulate gene transcription. Despite the importance of this intrinsic RdRP activity of DdRPs, associated factors and mechanisms are in their infancy stage. We employed potato spindle tuber viroid (PSTVd) as a model to study RNA-templated transcription. Here, we present evidence showing that …


Screening Anti-Pd-L2 Peptides As Antitumor Ligands Using Phage Display, Chien Tran Phuoc Dec 2022

Screening Anti-Pd-L2 Peptides As Antitumor Ligands Using Phage Display, Chien Tran Phuoc

Honors Projects

Cancer still remains one of the top leading causes of death in America. Recently, programmed cell death protein 1 (PD-1) blockades have been demonstrated to be highly effective against various types of cancer. By blocking PD-1 from binding with their ligands (PD-L1 and PD-L2), the “off” signal to the immune system is inhibited, hence reinvigorating the immune cells to kill tumor cells. To date, despite PD-L1 and PD-L2 both interacting with PD-1, research efforts have only been focused on developing anti-PD-L1 inhibitors. Therefore, the work of this honor project has focused on finding anti-PD-L2 peptides by phage display, with the …


Designing And Synthesizing A Warhead-Fragment Inhibitory Ligand For Ivyp1 Through Fragment-Based Drug Discovery, Samuel Moore Dec 2022

Designing And Synthesizing A Warhead-Fragment Inhibitory Ligand For Ivyp1 Through Fragment-Based Drug Discovery, Samuel Moore

Symposium of Student Scholars

Fragment-based drug discovery (FBDD) is a powerful tool for developing anticancer and antimicrobial agents. Within this, magnetic resonance spectroscopy (NMR) provides a comprehensive qualitative and quantitative approach to screening and validating weak and robust binders with targeted proteins, making NMR among the most attractive strategies in FBDD. Inhibitor of vertebrate lysozyme (Ivyp1) of P. aeruginosa serves as an excellent target because of its active cellular location and implications in clinical prognosis for cystic fibrosis and immunocompromised patients. This study uses current NMR and biophysical techniques to develop a covalent, fragment-linked warhead inhibitor for Ivyp1 through synthetic methods, warhead linking, and …


Chemical Control And Understanding Of Horizontal Gene Transfers, Drug-Resistance Development, And Filament And Biofilm Formation, Yuchen Jin Dec 2022

Chemical Control And Understanding Of Horizontal Gene Transfers, Drug-Resistance Development, And Filament And Biofilm Formation, Yuchen Jin

Dissertations - ALL

Biofilms formed by microbes on surfaces are the sources for persistent infectious diseases and environmental problems. The mechanism and details of how antibiotics promote biofilm formation is largely unknown. For instance, it not clear what stages of biofilm growth are promoted to proceed faster than without antibiotics, what phenotypes of bacteria form in an antibiotic-promoted biofilm, and what different biofilm compositions and structures are caused by the presence of antibiotics. Among other effects, antibiotics can cause bacteria to form filaments of living bacteria. Here, we conduct a real-time study of the adherence of bacteria and antibiotic-induced filamentous bacteria on surfaces …


The Role Of Fatty Acid Metabolism In The Pathogenesis Of Trypanosoma Brucei, Nava Poudyal Dec 2022

The Role Of Fatty Acid Metabolism In The Pathogenesis Of Trypanosoma Brucei, Nava Poudyal

All Dissertations

Trypanosoma brucei is the protozoan parasite that causes African Sleeping Sickness in humans and nagana, a wasting disease in cattle. T. brucei completes its life cycle in two hosts, mammals and the tsetse fly insect vector. Due to the geographical restriction of the tsetse fly, the disease is endemic in sub-Saharan Africa. Both the insect and mammalian forms of the parasite need fatty acids to anchor their surface proteins. We worked on three projects on fatty acid metabolism and its role in immune evasion strategies of T. brucei. First, we assessed the role of T. brucei surface proteins in …


Functional Characterization Of The Newly Discovered Type V Crispr-Cas Protein Cas12a2, Dylan J. Keiser Dec 2022

Functional Characterization Of The Newly Discovered Type V Crispr-Cas Protein Cas12a2, Dylan J. Keiser

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Similarly to people, bacteria are under the treat of infection by viruses. To circumvent these threats, bacteria evolve complex immune systems. Our understanding of some of these immune systems has led to many advancements in the field of Biotechnology including tools that made expressing proteins for study in a lab easier, tools that revolutionized the feasibility of gene editing, and tools that could change the way we think about viral diagnostics and cancer therapeutics. A certain type of immune system that bacteria use to fight virus is called a CRISPR system. Presented here is work to understand the function of …


A Novel Transmembrane Ligand Inhibits T Cell Receptor Activation, Yujie Ye Dec 2022

A Novel Transmembrane Ligand Inhibits T Cell Receptor Activation, Yujie Ye

Doctoral Dissertations

T lymphocytes (T cells) play essential roles in the adaptive immune system. Each mature T cell expresses one type of functional T cell receptor (TCR). The TCR recognizes antigens bound to the major histocompatibility complex (MHC) in antigen presenting cells. The resulting stimulation signal crosses the transmembrane domain of TCR and initiates downstream signaling cascades. The human immune system relies on TCRs to recognize a variety of pathogens. Normally, TCR can distinguish the self-antigens from pathogenic antigens. However, dysfunction or aberrant expression of TCRs causes different inflammatory and autoimmune diseases, which afflict millions of people annually (Chapter I). Current treatments …


Molecular Characterization Of Nitrogenase Regulation In Methanosarcina Acetivorans, Melissa Chanderban Dec 2022

Molecular Characterization Of Nitrogenase Regulation In Methanosarcina Acetivorans, Melissa Chanderban

Graduate Theses and Dissertations

Nitrogenase is the metalloenzyme only found in bacteria and archaea that is essential for biological nitrogen fixation (diazotrophy), but it can also serve as a catalyst in biofuel production. All diazotrophs contain a molybdenum (Mo) nitrogenase, while some species contain additional alternative nitrogenases where either vanadium (V) or iron (Fe) replace Mo in the active site cofactor. Nitrogen fixation by bacteria has been extensively studied. The limited investigation of nitrogen fixation in methanogenic archaea (methanogens) indicates production of nitrogenase is simpler than in bacteria and methanogen nitrogenase has different biochemical properties. Thus, methanogen nitrogenases provide a promising alternative for genetic …


The Binding Of The Micronutrient Transition Metals To The Alkylation Products Of Chemical Warfare Agent, Sulfur Mustard, And Thiols, Potentially Giving New Understanding To Physiological Effects Of Exposure And Increased Toxicity, Colin O'Donnell Dec 2022

The Binding Of The Micronutrient Transition Metals To The Alkylation Products Of Chemical Warfare Agent, Sulfur Mustard, And Thiols, Potentially Giving New Understanding To Physiological Effects Of Exposure And Increased Toxicity, Colin O'Donnell

Graduate Theses and Dissertations

Model compounds, 3,6,9-trithaiundecane-1,11-dicarboxylic acid (TTDPA), 2,5,8-trithianonane-1,9-dicarboxylic acid (TTDAA), and 1,11-diamide-3,6,9-trithiaundecane (TTDAce), closely related to the adducts formed by cysteine alkylation of the chemical weapon, sulfur mustard, were synthesized. It is shown that TTDPA forms complexes with key metal micronutrients: copper, nickel, cobalt, manganese, and zinc. Though the strength of binding to TTDPA varies, the complexes in many cases precipitate from solution. All metals produced a visible precipitate upon interaction with TTDPA under the conditions tested, however only Cu2+, Mn2+, and Zn2+ produced enough to be measured. The mass of formed precipitate seemed to peak at an equimolar ratio of TTDPA …


Using Molecular Dynamics Simulations To Decipher Mechanistic Details Of Biomolecular Processes Of Biology And Biotechnology Oriented Applications, Adithya Polasa Dec 2022

Using Molecular Dynamics Simulations To Decipher Mechanistic Details Of Biomolecular Processes Of Biology And Biotechnology Oriented Applications, Adithya Polasa

Graduate Theses and Dissertations

Researchers in chemistry and biology often utilize computer simulations, in conjunction with experimental data, to model and predict the structures, energies, kinetics, processes, and functions of the systems that are their focus of study, ranging from single molecules to whole viruses. Here, we use molecular dynamics (MD) techniques to gain a deeper understanding of biomolecular processes in biology and biotechnology-oriented applications. Using a mixture of equilibrium and non-equilibrium MD simulations, this work describes the insertion process of YidC at the atomic level. In order to better comprehend the insertion process, several docking models of YidC-Pf3 in the lipid bilayer were …


Characterizing And Epitope Mapping Single-Domain Antibodies On Borrelia Burgdorferi Protein Ospa, Saiful Basir Dec 2022

Characterizing And Epitope Mapping Single-Domain Antibodies On Borrelia Burgdorferi Protein Ospa, Saiful Basir

Legacy Theses & Dissertations (2009 - 2024)

Epitope mapping a protein that enables pathogenesis is crucial for the development of therapies and prophylactics that can inhibit the pathogen’s function and its transmission of disease. The lipoprotein OspA enables Lyme Disease etiologic pathogen, Borrelia burgdorferi, to inhabit the tick midgut until transmission occurs. Anti-OspA mAbs and their smaller VHH counterparts are highly specific and tailored to bind proteins such as OspA, reproducibly, at established binding sites or epitopes. Previous studies found an array of mAbs that successfully bound OspA and have already been used in epitope mapping. To our knowledge, this is the first use of VHHs in …


Development Of Nucleic Acid Diagnostics For Targeted And Non-Targeted Biosensing, Christopher William Smith Dec 2022

Development Of Nucleic Acid Diagnostics For Targeted And Non-Targeted Biosensing, Christopher William Smith

Legacy Theses & Dissertations (2009 - 2024)

The field of nucleic acid technology is rapidly expanding with new impactful discoveriesbeing made each year. Starting from the discovery of the double-helix structure, cloning, gene editing, polymerase chain reaction (PCR), CRISPR technology, and even the late mRNA vaccines; nucleic acid technology is at the forefront of improving medicine. Nucleic acid technology is extremely versatile due to its easy programmability, automated cheap synthesis, and even its catalog for numerous chemical modifications that can be used to alter structure stability. For example, the number of permutations that can be made with DNA just by altering the code for adenine (A), cytosine …


Synthesis And Biological Testing Of Small-Molecule Mitochondrial Complex I Inhibitors, Willough Sloan Dec 2022

Synthesis And Biological Testing Of Small-Molecule Mitochondrial Complex I Inhibitors, Willough Sloan

Undergraduate Honors Theses

This thesis delineates two main projects: the first outlines the structure elucidation efforts toward a Diels-Alder adduct of a novel reaction for the synthesis of chimaphilin, a naphthoquinone-based natural product with apoptotic or antiproliferative activity in certain cancer cells1,2. The structure elucidation extends to derivatives of chimaphilin synthesized by the same cyclization reaction. While Diels-Alder reactions are usually regioselective, 1H-NMR and 13C-NMR of the adducts was inconclusive and indicated the possibility of regioisomer presence, with one regioisomer being chimaphilin (or derivatives). A multitude of crystallization methods were carried out in order to be able to analyze …


Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam Dec 2022

Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam

Dissertations & Theses (Open Access)

ANK2 mutations in patients are associated with numerous arrhythmias, cardiomyopathies, and other heart defects. In the heart, AnkB, the protein encoded by ANK2, clusters relevant ion channels and cell adhesion molecules in several important domains; however, its role at Mitochondria Associated ER/SR Membranes (MAMs) has yet to be investigated. MAMs are crucial to mitochondrial function and metabolism and are signaling hubs implicated in various cardiac pathologies. Among several functions, these sites mediate the direct transfer of calcium from the ER/SR to the mitochondria to modulate ATP synthesis. Given that mitochondrial function and energy production are paramount to cardiovascular heath, …