Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

PDF

Conference

Ubiquitin

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Determination Of Amino Acids Involved In Specificity And Activity Of Chladub2, Trent S. Arbough, John M. Hausman, Chittaranjan Das Aug 2017

Determination Of Amino Acids Involved In Specificity And Activity Of Chladub2, Trent S. Arbough, John M. Hausman, Chittaranjan Das

The Summer Undergraduate Research Fellowship (SURF) Symposium

Chlamydia trachomatis is a pathogen which infects humans as a sexually transmitted disease or through ocular infection, causing ocular trachoma. Ocular trachoma is the leading cause of non-congenital blindness in developing countries. The bacteria employs the deubiquitinating enzyme ChlaDUB2 to remove ubiquitin from its inclusion membrane in order to avoid lysosomal degradation. Key amino acids involved in ubiquitin recognition and cleavage were mutated in order to probe substrate specificity and catalytic activity of ChlaDUB2. Mutants were used in fluorometry assays in order to determine how the mutations affect the ability of ChlaDUB2 to release the amino methyl coumarin (AMC) group …


Elucidating The Role Of Hausp Ubiquitin Like Domains In The Catalytic Function Of Usp7, Anuj Patel, Nicole Davis, Andrew Mesecar Aug 2015

Elucidating The Role Of Hausp Ubiquitin Like Domains In The Catalytic Function Of Usp7, Anuj Patel, Nicole Davis, Andrew Mesecar

The Summer Undergraduate Research Fellowship (SURF) Symposium

Ubiquitin specific proteases (USPs) are a class of enzymes involved in myriad cellular processes. One USP of great interest due to its oncogenic properties is USP7. In normal conditions USP7 is closely regulated due to its responsibility for destabilizing the tumor suppressor, p53, through the deubiquitination of MDM2. In multiple myeloma cases, it appears the regulation of USP7 subsides, as it is largely overexpressed, leading to the inappropriate degradation of p53. Inhibition of USP7 could, therefore, prove a viable target for cancer therapy. A greater understanding of USP7’s function and structure can lead to more insight into how this enzyme …