Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 164

Full-Text Articles in Life Sciences

Nucleobase-Modified Nucleosides And Nucleotides: Applications In Biochemistry, Synthetic Biology, And Drug Discovery, Anthony J. Berdis Nov 2022

Nucleobase-Modified Nucleosides And Nucleotides: Applications In Biochemistry, Synthetic Biology, And Drug Discovery, Anthony J. Berdis

Chemistry Faculty Publications

DNA is often referred to as the "molecule of life " since it contains the genetic blueprint for all forms of life on this planet. The core building blocks composing DNA are deoxynucleotides. While the deoxyribose sugar and phosphate group are ubiquitous, it is the composition and spatial arrangement of the four natural nucleobases, adenine (A), cytosine (C), guanine (G), and thymine (T), that provide diversity in the coding information present in DNA. The ability of DNA to function as the genetic blueprint has historically been attributed to the formation of proper hydrogen bonding interactions made between complementary nucleobases. However, …


Analysis Of Oxygen-18 Labeled Phosphate To Study Positional Isotope Experiments Using Lc-Qtof-Ms, Sujatha Chilakala, Iteen Cheng, Ireen Lee, Yan Xu Feb 2019

Analysis Of Oxygen-18 Labeled Phosphate To Study Positional Isotope Experiments Using Lc-Qtof-Ms, Sujatha Chilakala, Iteen Cheng, Ireen Lee, Yan Xu

Chemistry Faculty Publications

A method is proposed in this paper for the determination of oxygen-18 labeled phosphate so that positional isotope experiments using sensitive and rapid liquid chromatography–QTOF–mass spectrometry (LC-QTOF-MS) experiments can be carried out. The positional isotope exchange technique is a useful tool in understanding the mechanisms and kinetics of many enzyme-catalyzed reactions. Detection of the positions and concentration of these exchanged isotopes is the key. Gas chromatography–mass spectrometry (GC-MS) and nuclear magnetic resonance imaging are commonly used analytical techniques for measurement of 18O/16O, 31P and 15N isotope enrichment. Since these techniques either require a time-consuming derivatization …


Amino Acids Profiling For The Diagnosis Of Metabolic Disorders, Yana Sandlers Jan 2019

Amino Acids Profiling For The Diagnosis Of Metabolic Disorders, Yana Sandlers

Chemistry Faculty Publications

Inborn errors of metabolism (IEM) represent a group of inherited diseases in which genetic defect leads to the block on a metabolic pathway, resulting in a single enzyme dysfunction. As a downstream consequence of the residual or full loss of the enzymatic activity, there is an accumulation of toxic metabolites in the proximity of the metabolic block and/or a deficiency of an essential metabolic product which leads to the clinical presentation of the disease. While individually IEMs are rare, a collectively estimated incidence of metabolic inherited disorders is 1:800. The genetic basis of IEMs can involve abnormalities such as point …


Assessment Of Quantity And Quality Of Microplastics In The Sediments, Waters, Oysters, And Selected Fish Species In Key Sites Along The Bombong Estuary And The Coastal Waters Of Ticalan In San Juan, Batangas, Emilyn Q. Espiritu, Sophia Angeli Sn Dayrit, Annabel Soledad O. Coronel, Natasha Sophia C. Paz, Pilar Isabel L. Ronquillo, Virgil Christian G. Castillo, Erwin P. Enriquez Jan 2019

Assessment Of Quantity And Quality Of Microplastics In The Sediments, Waters, Oysters, And Selected Fish Species In Key Sites Along The Bombong Estuary And The Coastal Waters Of Ticalan In San Juan, Batangas, Emilyn Q. Espiritu, Sophia Angeli Sn Dayrit, Annabel Soledad O. Coronel, Natasha Sophia C. Paz, Pilar Isabel L. Ronquillo, Virgil Christian G. Castillo, Erwin P. Enriquez

Chemistry Faculty Publications

Microplastics (or MPs; < 5 mm in size) pollution is largely unstudied in the Philippines. From an environmental sustainability standpoint, it is important to understand the characteristics, abundance, and environmental fate of plastic debris of various sizes, and these include microplastics that are not more easily and readily detected. In this study, we assessed the extent of microplastics contamination in the sediments, waters, oysters, and selected fishes found in the rivers and coastal areas of Ticalan, Batangas, which were identified from water quality parameters as Class C and CS, respectively. The microplastics were extracted from these samples by chemical digestion of the matrix, series of filtration, and separation by flotation through a density gradient to finally isolate the microplastics which were not dissolved by chemical digestion. The isolated samples were imaged by optical microscopy and characterized based on their descriptive attributes. The results showed the presence of microplastics in all the samples tested, which were found mostly in the form of filaments, fragments, films, and pellets – with most showing weathered, degraded, or angular and irregular surfaces. Identification was done through spectral matching of the Fourier transform infrared spectra of isolated fragments with that of known plastics, although identification in some cases is made uncertain by possibility of degradation of the plastics in the environment. The majority of the isolates showed signature absorption bands of the C-H stretching vibrations of polyethylene-based plastics.


Data On Spectrum-Based Fluorescence Resonance Energy Transfer Measurement Of E. Coli Multidrug Transporter Acrb, Yuguang Cai, Thomas E. Wilkop, Yinan Wei Dec 2018

Data On Spectrum-Based Fluorescence Resonance Energy Transfer Measurement Of E. Coli Multidrug Transporter Acrb, Yuguang Cai, Thomas E. Wilkop, Yinan Wei

Chemistry Faculty Publications

This paper presented the dataset of correction parameters used in the determination of the energy transfer efficiencies from the spectrum-based fluorescence resonance energy transfer (FRET) measurement in a trimeric membrane protein AcrB. The cyan fluorescent protein (CFP) and yellow fluorescent protein (YPet) were used as the donor and acceptor, respectively. Two AcrB fusion proteins were constructed, AcrB-CFP and AcrB-YPet. The proteins were co-expressed in Escherichia coli cells, and energy transfer efficiency were determined in live cells. To obtain reliable energy transfer data, a complete set of correction parameters need to be first determined to accommodate for factors such as background …


Decreasing Phosphatidylcholine On The Surface Of The Lipid Droplet Correlates With Altered Protein Binding And Steatosis, Laura Listenberger, Elizabeth Townsend, Cassandra Rickertsen, Anastasia Hains, Elizabeth Brown, Emily G. Inwards, Angela K. Stoeckman Nov 2018

Decreasing Phosphatidylcholine On The Surface Of The Lipid Droplet Correlates With Altered Protein Binding And Steatosis, Laura Listenberger, Elizabeth Townsend, Cassandra Rickertsen, Anastasia Hains, Elizabeth Brown, Emily G. Inwards, Angela K. Stoeckman

Chemistry Faculty Publications

Alcoholic fatty liver disease (AFLD) is characterized by an abnormal accumulation of lipid droplets (LDs) in the liver. Here, we explore the composition of hepatic LDs in a rat model of AFLD. Five to seven weeks of alcohol consumption led to significant increases in hepatic triglyceride mass, along with increases in LD number and size. Additionally, hepatic LDs from rats with early alcoholic liver injury show a decreased ratio of surface phosphatidylcholine (PC) to phosphatidylethanolamine (PE). This occurred in parallel with an increase in the LD association of perilipin 2, a prominent LD protein. To determine if changes to the …


Manganese Oxide/Hemin-Functionalized Graphene As A Platform For Peroxynitrite Sensing, Haitham F. Kalil, Shaimaa Maher, Tiyash Bose, Mekki Bayachou Aug 2018

Manganese Oxide/Hemin-Functionalized Graphene As A Platform For Peroxynitrite Sensing, Haitham F. Kalil, Shaimaa Maher, Tiyash Bose, Mekki Bayachou

Chemistry Faculty Publications

Peroxynitrite (ONOO−, PON) is a powerful oxidizing agent generated in vivo by the diffusion-limited reaction of nitric oxide (NO) and superoxide (O2˙) radicals. Under oxidative stress, cumulated peroxynitrite levels are associated with chronic inflammatory disorders and other pathophysiological conditions. The accurate detection of peroxynitrite in biological systems is important, not only to understand the genesis and development of diseases, but also to explore and design potential therapeutics. Herein, a manganese oxide/hemin-modified graphene interface is explored as a platform for peroxynitrite amperometric detection. Hemin-functionalized reduced graphene oxide was further modified with manganese oxide nanoparticles to provide a …


Cross Photoreaction Of Glyoxylic And Pyruvic Acids In Model Aqueous Aerosol, Sha-Sha Xia, Alexis J. Eugene, Marcelo I. Guzman Jul 2018

Cross Photoreaction Of Glyoxylic And Pyruvic Acids In Model Aqueous Aerosol, Sha-Sha Xia, Alexis J. Eugene, Marcelo I. Guzman

Chemistry Faculty Publications

Aerosols of variable composition, size, and shape are associated with public health concerns as well as with light-particle interactions that play a role in the energy balance of the atmosphere. Photochemical reactions of 2-oxocarboxylic acids in the aqueous phase are now known to contribute to the total secondary organic aerosol (SOA) budget. This work explores the cross reaction of glyoxylic acid (GA) and pyruvic acid (PA) in water, the two most abundant 2-oxocarboxylic acids in the atmosphere, under solar irradiation and dark thermal aging steps. During irradiation, PA and GA are excited and initiate proton-coupled electron transfer or hydrogen abstraction …


N-Glycosylation In The Protease Domain Of Trypsin-Like Serine Proteases Mediates Calnexin-Assisted Protein Folding, Hao Wang, Shuo Li, Juejin Wang, Shenghan Chen, Xue-Long Sun, Qingyu Wu Jun 2018

N-Glycosylation In The Protease Domain Of Trypsin-Like Serine Proteases Mediates Calnexin-Assisted Protein Folding, Hao Wang, Shuo Li, Juejin Wang, Shenghan Chen, Xue-Long Sun, Qingyu Wu

Chemistry Faculty Publications

Trypsin-like serine proteases are essential in physiological processes. Studies have shown that N-glycans are important for serine protease expression and secretion, but the underlying mechanisms are poorly understood. Here, we report a common mechanism of N-glycosylation in the protease domains of corin, enteropeptidase and prothrombin in calnexin-mediated glycoprotein folding and extracellular expression. This mechanism, which is independent of calreticulin and operates in a domain-autonomous manner, involves two steps: direct calnexin binding to target proteins and subsequent calnexin binding to monoglucosylated N-glycans. Elimination of N-glycosylation sites in the protease domains of corin, enteropeptidase and prothrombin inhibits corin and enteropeptidase cell surface …


A Multisession, Undergraduate Molecular Biology Lab Experiment Using Green Fluorescent Protein Including Subcloning And Color Changing Mutagenesis, Nathan S. Winter Apr 2018

A Multisession, Undergraduate Molecular Biology Lab Experiment Using Green Fluorescent Protein Including Subcloning And Color Changing Mutagenesis, Nathan S. Winter

Chemistry Faculty Publications

This paper describes a series of experiments involving handling and manipulating the DNA coding for Green Fluorescent Protein (GFP) including the subcloning of this gene, and mutating the DNA so that Cyan Fluorescent Protein (CFP) or Blue Fluorescent protein (BFP) are expressed. The primers needed for the PCR based subcloning of GFP are presented, as are those needed to mutate the GFP to either CFP or BFP.


Untargeted Bioassay Strategy For Medicinal Plants: In Vitro Antidiabetic Activity And 13c Nmr Profiling Of Extracts From Vitex Negundo L, Fabian M. Dayrit, Myrnille Joy B. Zabala, Lolita G. Lagurin Apr 2018

Untargeted Bioassay Strategy For Medicinal Plants: In Vitro Antidiabetic Activity And 13c Nmr Profiling Of Extracts From Vitex Negundo L, Fabian M. Dayrit, Myrnille Joy B. Zabala, Lolita G. Lagurin

Chemistry Faculty Publications

Bioassay-guided fractionation is the principal method for the identification of active constituents in medicinal plants. By design, this method aims to identify the most active compound in a complex mixture with the objective of discovering novel drug candidates. Described here is a complementary method for the identification of known bioactive compounds in medicinal plants which is untargeted and which takes advantage of the large NMR database of known natural products and availability of statistical software. This untargeted bioassay strategy is demonstrated as a proof of principle in the determination of the antidiabetic compounds in Vitex negundo L. Crude methanol and …


Distinct Properties Underlie Flavin-Based Electron Bifurcation In A Novel Electron Transfer Flavoprotein Fixab From Rhodopseudomonas Palustris, H. Diessel Duan, Carolyn E. Lubner, Monika Tokmina-Lukaszewska, George H. Gauss, Brian Bothner, Paul W. King, John W. Peters, Anne-Frances Miller Feb 2018

Distinct Properties Underlie Flavin-Based Electron Bifurcation In A Novel Electron Transfer Flavoprotein Fixab From Rhodopseudomonas Palustris, H. Diessel Duan, Carolyn E. Lubner, Monika Tokmina-Lukaszewska, George H. Gauss, Brian Bothner, Paul W. King, John W. Peters, Anne-Frances Miller

Chemistry Faculty Publications

A newly recognized third fundamental mechanism of energy conservation in biology, electron bifurcation, uses free energy from exergonic redox reactions to drive endergonic redox reactions. Flavin-based electron bifurcation furnishes low-potential electrons to demanding chemical reactions, such as reduction of dinitrogen to ammonia. We employed the heterodimeric flavoenzyme FixAB from the diazotrophic bacterium Rhodopseudomonas palustris to elucidate unique properties that underpin flavin-based electron bifurcation. FixAB is distinguished from canonical electron transfer flavoproteins (ETFs) by a second FAD that replaces the AMP of canonical ETF. We exploited near-UV–visible CD spectroscopy to resolve signals from the different flavin sites in FixAB and to …


Defining Electron Bifurcation In The Electron-Transferring Flavoprotein Family, Amaya M. Garcia Costas, Saroj Poudel, Anne-Frances Miller, Gerrit J. Schut, Rhesa N. Ledbetter, Kathryn R. Fixen, Lance C. Seefeldt, Michael W. W. Adams, Caroline S. Harwood, Eric S. Boyd, John W. Peters Nov 2017

Defining Electron Bifurcation In The Electron-Transferring Flavoprotein Family, Amaya M. Garcia Costas, Saroj Poudel, Anne-Frances Miller, Gerrit J. Schut, Rhesa N. Ledbetter, Kathryn R. Fixen, Lance C. Seefeldt, Michael W. W. Adams, Caroline S. Harwood, Eric S. Boyd, John W. Peters

Chemistry Faculty Publications

Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low- and high-potential electrons. It is the third recognized form of energy conservation in biology and was recently described for select electron-transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via Etf-quinone oxidoreductase. Canonical examples contain a flavin adenine dinucleotide (FAD) that is involved in electron transfer, as well as a non-redox-active AMP. However, Etfs demonstrated to bifurcate electrons contain a second FAD in place of the …


The Future Perspective: Metabolomics In Laboratory Medicine For Inborn Errors Of Metabolism, Yana Sandlers Nov 2017

The Future Perspective: Metabolomics In Laboratory Medicine For Inborn Errors Of Metabolism, Yana Sandlers

Chemistry Faculty Publications

Metabolomics can be described as a simultaneous and comprehensive analysis of small molecules in a biological sample. Recent technological and bioinformatics advances have facilitated large-scale metabolomic studies in many areas, including inborn errors of metabolism (IEMs). Despite significant improvements in the diagnosis and treatment of some IEMs, it is still challenging to understand how genetic variation affects disease progression and susceptibility. In addition, a search for new more personalized therapies and a growing demand for tools to monitor the long-term metabolic effects of existing therapies set the stage for metabolomics integration in preclinical and clinical studies. While targeted metabolomics approach …


Development And Validation Of A Novel Lc–Ms/Ms Method For Simultaneous Determination Of Abiraterone And Its Seven Steroidal Metabolites In Human Serum: Innovation In Separation Of Diastereoisomers Without Use Of A Chiral Column, Mohammad Alyamani, Zhenfei Li, Sunil K. Upadhyay, David J. Anderson, Richard J. Auchus, Nima Sharifi Sep 2017

Development And Validation Of A Novel Lc–Ms/Ms Method For Simultaneous Determination Of Abiraterone And Its Seven Steroidal Metabolites In Human Serum: Innovation In Separation Of Diastereoisomers Without Use Of A Chiral Column, Mohammad Alyamani, Zhenfei Li, Sunil K. Upadhyay, David J. Anderson, Richard J. Auchus, Nima Sharifi

Chemistry Faculty Publications

Abiraterone acetate (AA), the prodrug of abiraterone, is FDA-approved for the treatment of castration-resistant prostate cancer. Abiraterone is metabolized in patients to a more potent analogue, D4A. However, we have recently reported that this analogue is further metabolized to additional metabolites in patients treated with AA. Here, we present a liquid chromatography-tandem mass spectrometry method developed to resolve and detect abiraterone and its seven metabolites in human serum using an AB Sciex Qtrap 5500 mass analyzer coupled with a Shimadzu Nexera UPLC station. Analytes and the internal standard (abiraterone-d4) were extracted from human serum using the liquid–liquid extraction procedure. The …


A Comparative Analysis Of Translesion Dna Synthesis Catalyzed By A High-Fidelity Dna Polymerase, Anvesh Dasari, Tejal Deodhar, Anthony J. Berdis Jul 2017

A Comparative Analysis Of Translesion Dna Synthesis Catalyzed By A High-Fidelity Dna Polymerase, Anvesh Dasari, Tejal Deodhar, Anthony J. Berdis

Chemistry Faculty Publications

Translesion DNA synthesis (TLS) is the ability of DNA polymerases to incorporate nucleotides opposite and beyond damaged DNA. TLS activity is an important risk factor for the initiation and progression of genetic diseases such as cancer. In this study, we evaluate the ability of a high-fidelity DNA polymerase to perform TLS with 8-oxo-guanine (8-oxo-G), a highly pro-mutagenic DNA lesion formed by reactive oxygen species. Results of kinetic studies monitoring the incorporation of modified nucleotide analogs demonstrate that the binding affinity of the incoming dNTP is controlled by the overall hydrophobicity of the nucleobase. However, the rate constant for the …


Inhibiting Translesion Dna Synthesis As An Approach To Combat Drug Resistance To Dna Damaging Agents, Jung-Suk Choi, Seol Kim, Edward Motea, Anthony J. Berdis Jun 2017

Inhibiting Translesion Dna Synthesis As An Approach To Combat Drug Resistance To Dna Damaging Agents, Jung-Suk Choi, Seol Kim, Edward Motea, Anthony J. Berdis

Chemistry Faculty Publications

Anti-cancer agents exert therapeutic effects by damaging DNA. Unfortunately, DNA polymerases can effectively replicate the formed DNA lesions to cause drug resistance and create more aggressive cancers. To understand this process at the cellular level, we developed an artificial nucleoside that visualizes the replication of damaged DNA to identify cells that acquire drug resistance through this mechanism. Visualization is achieved using "click" chemistry to covalently attach azide-containing fluorophores to the ethynyl group present on the nucleoside analog after its incorporation opposite damaged DNA. Flow cytometry and microscopy techniques demonstrate that the extent of nucleotide incorporation into genomic DNA is enhanced …


Physiological Effects Of Five Different Marine Natural Organic Matters (Noms) And Three Different Metals (Cu, Pb, Zn) On Early Life Stages Of The Blue Mussel (Mytilus Galloprovincialis), Lygia Sega Nogueira, Adalto Bianchini, Scott Smith, Marianna Basso Jorge, Rachael L. Diamond, Chris M. Wood Apr 2017

Physiological Effects Of Five Different Marine Natural Organic Matters (Noms) And Three Different Metals (Cu, Pb, Zn) On Early Life Stages Of The Blue Mussel (Mytilus Galloprovincialis), Lygia Sega Nogueira, Adalto Bianchini, Scott Smith, Marianna Basso Jorge, Rachael L. Diamond, Chris M. Wood

Chemistry Faculty Publications

Metals are present in aquatic environments as a result of natural and anthropogenic inputs, and may induce toxicity to organisms. One of the main factors that influence this toxicity in fresh water is natural organic matter (NOM) but all NOMs are not the same in this regard. In sea water, possible protection by marine NOMs is not well understood. Thus, our study isolated marine NOMs by solid-phase extraction from five different sites and characterized them by excitation-emission fluorescence analysis—one inshore (terrigenous origin), two offshore (autochthonous origin), and two intermediate in composition (indicative of a mixed origin). The physiological effects of …


Oxidation Of Substituted Catechols At The Air-Water Interface: Production Of Carboxylic Acids, Quinones, And Polyphenols, Elizabeth A. Pillar, Marcelo I. Guzman Apr 2017

Oxidation Of Substituted Catechols At The Air-Water Interface: Production Of Carboxylic Acids, Quinones, And Polyphenols, Elizabeth A. Pillar, Marcelo I. Guzman

Chemistry Faculty Publications

Anthropogenic activities contribute benzene, toluene, and anisole to the environment, which in the atmosphere are converted into the respective phenols, cresols, and methoxyphenols by fast gas-phase reaction with hydroxyl radicals (HO(•)). Further processing of the latter species by HO(•) decreases their vapor pressure as a second hydroxyl group is incorporated to accelerate their oxidative aging at interfaces and in aqueous particles. This work shows how catechol, pyrogallol, 3-methylcatechol, 4-methylcatechol, and 3-methoxycatechol (all proxies for oxygenated aromatics derived from benzene, toluene, and anisole) react at the air-water interface with increasing O3(g) during τc ≈ 1 μs contact time and contrasts their …


Reactivity Of Ketyl And Acetyl Radicals From Direct Solar Actinic Photolysis Of Aqueous Pyruvic Acid, Alexis J. Eugene, Marcelo I. Guzman Mar 2017

Reactivity Of Ketyl And Acetyl Radicals From Direct Solar Actinic Photolysis Of Aqueous Pyruvic Acid, Alexis J. Eugene, Marcelo I. Guzman

Chemistry Faculty Publications

The variable composition of secondary organic aerosols (SOA) contributes to the large uncertainty for predicting radiative forcing. A better understanding of the reaction mechanisms leading to aerosol formation such as for the photochemical reaction of aqueous pyruvic acid (PA) at λ ≥ 305 nm can contribute to constrain these uncertainties. Herein, the photochemistry of aqueous PA (5-300 mM) continuously sparged with air is re-examined in the laboratory under comparable irradiance at 38° N at noon on a summer day. Several analytical methods are employed to monitor the time series of the reaction, including (1) the derivatization of carbonyl (C═O) functional …


Hmba Is A Putative Hsp70 Activator Stimulating Hexim1 Expression That Is Down-Regulated By Estrogen, Rati Lama, Chunfang Gan, Nethrie Idippily, Viharika Bobba, David Danielpour, Monica Montano, Bin Su Ph.D. Feb 2017

Hmba Is A Putative Hsp70 Activator Stimulating Hexim1 Expression That Is Down-Regulated By Estrogen, Rati Lama, Chunfang Gan, Nethrie Idippily, Viharika Bobba, David Danielpour, Monica Montano, Bin Su Ph.D.

Chemistry Faculty Publications

Hexamethylene bis-acetamide inducible protein 1 (HEXIM1) is identified as a novel inhibitor of estrogen stimulated breast cell growth, and it suppresses estrogen receptor-a transcriptional activity. HEXIM1 protein level has been found to be downregulated by estrogens. Recently, HEXIM1 has been found to inhibit androgen receptor transcriptional activity as well. Researchers have used Hexamethylene bisacetamide (HMBA) for decades to stimulate HEXIM1 expression, which also inhibit estrogen stimulated breast cancer cell gene activation and androgen stimulated prostate cancer gene activation. However, the direct molecular targets of HMBA that modulate the induction of HEXIM1 expression in mammalian cells have not been identified. Based …


Comparative Proteomic Analyses Of The Parietal Lobe From Rhesus Monkeys Fed A High-Fat/Sugar Diet With And Without Resveratrol Supplementation, Relative To A Healthy Diet: Insights Into The Roles Of Unhealthy Diets And Resveratrol On Function, Aaron M. Swomley, Judy C. Triplett, Jeriel T. Keeney, Govind Warrier, Kevin J. Pearson, Julie A. Mattison, Rafael De Cabo, Jian Cai, Jon B. Klein, D. Allan Butterfield Jan 2017

Comparative Proteomic Analyses Of The Parietal Lobe From Rhesus Monkeys Fed A High-Fat/Sugar Diet With And Without Resveratrol Supplementation, Relative To A Healthy Diet: Insights Into The Roles Of Unhealthy Diets And Resveratrol On Function, Aaron M. Swomley, Judy C. Triplett, Jeriel T. Keeney, Govind Warrier, Kevin J. Pearson, Julie A. Mattison, Rafael De Cabo, Jian Cai, Jon B. Klein, D. Allan Butterfield

Chemistry Faculty Publications

A diet consisting of a high intake of saturated fat and refined sugars is characteristic of a Western-diet and has been shown to have a substantial negative effect on human health. Expression proteomics were used to investigate changes to the parietal lobe proteome of rhesus monkeys consuming either a high fat and sugar (HFS) diet, a HFS diet supplemented with resveratrol (HFS+RSV), or a healthy control diet for 2 years. Here we discuss the modifications in the levels of 12 specific proteins involved in various cellular systems including metabolism, neurotransmission, structural integrity, and general cellular signaling following a nutritional intervention. …


Myeloperoxidase-Mediated Protein Lysine Oxidation Generates 2- Aminoadipic Acid And Lysine Nitrile In Vivo, Hongqiao Lin, Bruce S. Levison, Jennifer A. Buffa, Ying Huang, Xiaoming Fu, Zeneng Wang, Valentin Gogonea, Joseph A. Didonato, Stanley L. Hazen Jan 2017

Myeloperoxidase-Mediated Protein Lysine Oxidation Generates 2- Aminoadipic Acid And Lysine Nitrile In Vivo, Hongqiao Lin, Bruce S. Levison, Jennifer A. Buffa, Ying Huang, Xiaoming Fu, Zeneng Wang, Valentin Gogonea, Joseph A. Didonato, Stanley L. Hazen

Chemistry Faculty Publications

Recent studies reveal 2-aminoadipic acid (2-AAA) is both elevated in subjects at risk for diabetes and mechanistically linked to glucose homeostasis. Prior studies also suggest enrichment of protein-bound 2-AAA as an oxidative post-translational modification of lysyl residues in tissues associated with degenerative diseases of aging. While in vitro studies suggest redox active transition metals or myeloperoxidase (MPO) generated hypochlorous acid (HOCl) may produce protein-bound 2-AAA, the mechanism(s) responsible for generation of 2- AAA during inflammatory diseases are unknown. In initial studies we observed that traditional acid- or basecatalyzed protein hydrolysis methods previously employed to measure tissue 2-AAA can artificially generate …


Chemical Profiling And Chemical Standardization Of Vitex Negundo Using 13c Nmr, Fabian M. Dayrit, Lolita G. Lagurin, John Daniel J. Magsalin, Anthony R. Zosa Jan 2017

Chemical Profiling And Chemical Standardization Of Vitex Negundo Using 13c Nmr, Fabian M. Dayrit, Lolita G. Lagurin, John Daniel J. Magsalin, Anthony R. Zosa

Chemistry Faculty Publications

Chemical profiling and standardization of the defatted methanol extract of the leaves of Vitex negundo L. were carried out using 13C nuclear magnetic resonance (NMR) analysis followed by chemometric analysis of the chemical shift data. Chemical profile was obtained using a k-means cluster profile and chemical standardization which was achieved using a multivariate control chart. The V. negundo samples were made up of four groups: the training set, submitted samples from production farms, commercial samples, such as tablets, capsules and teas, and experimental samples (samples which were allowed to degrade). Four groups were generated in k-means cluster, which generally corresponded …


A Mutation In Ltbp2 Causes Congenital Glaucoma In Domestic Cats (Felis Catus), Markus H. Kuehn, Koren A. Lipsett, Marilyn Menotti-Raymond, S. Scott Whitmore, Todd E. Scheetz, Victor A. David, Stephen J. O'Brien, Zhongyuan Zhao, Jackie K. Jens, Elizabeth M. Snella, N. Matthew Ellinwood, Gillian J. Mclellan May 2016

A Mutation In Ltbp2 Causes Congenital Glaucoma In Domestic Cats (Felis Catus), Markus H. Kuehn, Koren A. Lipsett, Marilyn Menotti-Raymond, S. Scott Whitmore, Todd E. Scheetz, Victor A. David, Stephen J. O'Brien, Zhongyuan Zhao, Jackie K. Jens, Elizabeth M. Snella, N. Matthew Ellinwood, Gillian J. Mclellan

Chemistry Faculty Publications

The glaucomas are a group of diseases characterized by optic nerve damage that together represent a leading cause of blindness in the human population and in domestic animals. Here we report a mutation in LTBP2 that causes primary congenital glaucoma (PCG) in domestic cats. We identified a spontaneous form of PCG in cats and established a breeding colony segregating for PCG consistent with fully penetrant, autosomal recessive inheritance of the trait. Elevated intraocular pressure, globe enlargement and elongated ciliary processes were consistently observed in all affected cats by 8 weeks of age. Varying degrees of optic nerve damage resulted by …


Photocatalytic Reduction Of Fumarate To Succinate On Zns Mineral Surfaces, Ruixin Zhou, Marcelo I. Guzman Apr 2016

Photocatalytic Reduction Of Fumarate To Succinate On Zns Mineral Surfaces, Ruixin Zhou, Marcelo I. Guzman

Chemistry Faculty Publications

The reductive tricarboxylic acid (rTCA) cycle is an important central biosynthetic pathway that fixes CO2 into carboxylic acids. Among the five reductive steps in the rTCA cycle, the two-electron reduction of fumarate to succinate proceeds nonenzymatically on the surface of photoexcited sphalerite (ZnS) colloids suspended in water. This model reaction is chosen to systematically study the surface photoprocess occurring on ZnS in the presence of [Na2S] (1–10 mM) hole scavenger at 15 °C. Experiments at variable pH (5–10) indicate that monodissociated fumaric acid is the primary electron acceptor forming the monoprotic form of succinic acid. The following …


Metabolomics Reveals New Mechanisms For Pathogenesis In Barth Syndrome And Introduces Novel Roles For Cardiolipin In Cellular Function, Yana Sandlers, Kelly Mercier, Wimal Pathmasiri, Jim Carlson, Susan Mcritchie, Susan Sumner, Hilary J. Vernon Mar 2016

Metabolomics Reveals New Mechanisms For Pathogenesis In Barth Syndrome And Introduces Novel Roles For Cardiolipin In Cellular Function, Yana Sandlers, Kelly Mercier, Wimal Pathmasiri, Jim Carlson, Susan Mcritchie, Susan Sumner, Hilary J. Vernon

Chemistry Faculty Publications

Barth Syndrome is the only known Mendelian disorder of cardiolipin remodeling, with characteristic clinical features of cardiomyopathy, skeletal myopathy, and neutropenia. While the primary biochemical defects of reduced mature cardiolipin and increased monolysocardiolipin are well-described, much of the downstream biochemical dysregulation has not been uncovered, and biomarkers are limited. In order to further expand upon the knowledge of the biochemical abnormalities in Barth Syndrome, we analyzed metabolite profiles in plasma from a cohort of individuals with Barth Syndrome compared to age-matched controls via 1H nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry. A clear distinction between metabolite profiles of …


The Dual Regulatory Role Of Amino Acids Leu480 And Gln481 Of Prothrombin, Joesph R. Wiencek, Jamila Hirbawi, Vivien C. Yee, Michael Kalafatis Jan 2016

The Dual Regulatory Role Of Amino Acids Leu480 And Gln481 Of Prothrombin, Joesph R. Wiencek, Jamila Hirbawi, Vivien C. Yee, Michael Kalafatis

Chemistry Faculty Publications

Prothrombin (FII) is activated to α-thrombin (IIa) by prothrombinase. Prothrombinase is composed of a catalytic subunit, factor Xa (fXa), and a regulatory subunit, factor Va (fVa), assembled on a membrane surface in the presence of divalent metal ions. We constructed, expressed, and purified several mutated recombinant FII (rFII) molecules within the previously determined fVa-dependent binding site for fXa (amino acid region 473–487 of FII). rFII molecules bearing overlapping deletions within this significant region first established the minimal stretch of amino acids required for the fVa-dependent recognition exosite for fXa in prothrombinase within the amino acid sequence Ser478–Val479 …


It Is All About (U)Biquitin: Role Of Altered Ubiquitin-Proteasome System And Uchl1 In Alzheimer Disease, Antonella Tramutola, Fabio Di Domenico, Eugenio Barone, Marzia Perluigi, D. Allan Butterfield Jan 2016

It Is All About (U)Biquitin: Role Of Altered Ubiquitin-Proteasome System And Uchl1 In Alzheimer Disease, Antonella Tramutola, Fabio Di Domenico, Eugenio Barone, Marzia Perluigi, D. Allan Butterfield

Chemistry Faculty Publications

Free radical-mediated damage to macromolecules and the resulting oxidative modification of different cellular components are a common feature of aging, and this process becomes much more pronounced in age-associated pathologies, including Alzheimer disease (AD). In particular, proteins are particularly sensitive to oxidative stress-induced damage and these irreversible modifications lead to the alteration of protein structure and function. In order to maintain cell homeostasis, these oxidized/damaged proteins have to be removed in order to prevent their toxic accumulation. It is generally accepted that the age-related accumulation of “aberrant” proteins results from both the increased occurrence of damage and the decreased efficiency …


Multi-Dimensional Glycan Microarrays With Glyco-Macroligands, Satya Nandana Narla, Huan Nie, Yu Li, Xue-Long Sun Oct 2015

Multi-Dimensional Glycan Microarrays With Glyco-Macroligands, Satya Nandana Narla, Huan Nie, Yu Li, Xue-Long Sun

Chemistry Faculty Publications

Glycan microarray has become a powerful high-throughput tool for examining binding interactions of carbohydrates with the carbohydrate binding biomolecules like proteins, enzymes, antibodies etc. It has shown great potential for biomedical research and applications, such as antibody detection and profiling, vaccine development, biomarker discovery, and drug screening. Most glycan microarrays were made with monovalent glycans immobilized directly onto the array surface via either covalent or non-covalent bond, which afford a multivalent glycans in two dimensional (2D) displaying. A variety of glyco-macroligands have been developed to mimic multivalent carbohydrate-protein interactions for studying carbohydrate-protein interactions and biomedical research and applications. Recently, a …