Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Bacteriology

Dartmouth Scholarship

Series

2004

Mutation

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Sadb Is Required For The Transition From Reversible To Irreversible Attachment During Biofilm Formation By Pseudomonas Aeruginosa Pa14, Nicky C. Caiazza, George A. O'Toole Jul 2004

Sadb Is Required For The Transition From Reversible To Irreversible Attachment During Biofilm Formation By Pseudomonas Aeruginosa Pa14, Nicky C. Caiazza, George A. O'Toole

Dartmouth Scholarship

Current models of biofilm formation by Pseudomonas aeruginosa propose that (i) planktonic cells become surface associated in a monolayer, (ii) surface-associated cells form microcolonies by clonal growth and/or aggregation, (iii) microcolonies transition to a mature biofilm comprised of exopolysaccharide-encased macrocolonies, and (iv) cells exit the mature biofilm and reenter the planktonic state. Here we report a new class of P. aeruginosa biofilm mutant that defines the transition from reversible to irreversible attachment and is thus required for monolayer formation. The transposon insertion carried by the sadB199 mutant was mapped to open reading frame PA5346 of P. aeruginosa PA14 and encodes …


A Dominant-Negative Fur Mutation In Bradyrhizobium Japonicum, Heather P. Benson, Kristin Levier, Mary Lou Guerinot Mar 2004

A Dominant-Negative Fur Mutation In Bradyrhizobium Japonicum, Heather P. Benson, Kristin Levier, Mary Lou Guerinot

Dartmouth Scholarship

In many bacteria, the ferric uptake regulator (Fur) protein plays a central role in the regulation of iron uptake genes. Because iron figures prominently in the agriculturally important symbiosis between soybean and its nitrogen-fixing endosymbiont Bradyrhizobium japonicum, we wanted to assess the role of Fur in the interaction. We identified a fur mutant by selecting for manganese resistance. Manganese interacts with the Fur protein and represses iron uptake genes. In the presence of high levels of manganese, bacteria with a wild-type copy of the furgene repress iron uptake systems and starve for iron, whereas fur mutants fail to …