Open Access. Powered by Scholars. Published by Universities.®

Other Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Other Engineering

Integrated Chirped-Grating Spectrometer-On-A-Chip, Shima Nezhadbadeh Nov 2019

Integrated Chirped-Grating Spectrometer-On-A-Chip, Shima Nezhadbadeh

Optical Science and Engineering ETDs

In this dissertation we demonstrate a new structure based on waveguide coupling atop a silicon wafer using a chirped grating to provide the dispersion that leads to a high-resolution, compact, fully integrable and CMOS-compatible spectrometer. Light is both analyzed and detected in a single, completely monolithic component which enables realizing a high-resolution portable spectrometer with an extremely compact footprint. The structure is comprised of a SiO2/Si3N4/SiO2 waveguide on top of a silicon wafer. Grating regions are fabricated on the top cladding of the waveguide. The input light is incident on a chirped grating …


Tailored Frequency Comb Structures And Their Sensing Applications, James Hendrie Aug 2019

Tailored Frequency Comb Structures And Their Sensing Applications, James Hendrie

Optical Science and Engineering ETDs

The focus of this dissertation is the development and investigation of nested cavity mode-locked lasers and their resultant tailored frequency combs. A nested cavity is made up of two cavities, known as parents. One parent is a larger, active, 100MHz Ti:Saph oscillator and the other is a smaller, passive, 7GHz Fabry-Perot Etalon (FPE). Unlike standard frequency combs that are continuous, a tailored comb’s teeth are distributed in equally spaced groups where the center of each group corresponds to the resonance of the FPE and the side bands are determined by the resonances of the Ti:Saph. This unique coupling of the …


Design, Fabrication, And Characterization Of Multilayer Hyperbolic Metamaterials, James Dilts May 2019

Design, Fabrication, And Characterization Of Multilayer Hyperbolic Metamaterials, James Dilts

Graduate Theses - Physics and Optical Engineering

Hyperbolic metamaterials (HMMs) show extreme anisotropy, acting as metals and dielectrics along orthogonal directions. They are designed using the effective medium theory (EMT) and can be fabricated using standard semiconductor processing techniques. Current techniques used to characterize the optical behavior of HMMs have a high complexity or are unable to robustly determine the complex permittivity tensor. We describe the details of a procedure to obtain a very low mean-squared-error (MSE) for extraction of permittivity from hyperbolic metamaterials using spectroscopic ellipsometry. We have verified our procedure by fabricating three different samples of various materials and fill factors designed to have a …


Generation And Use Of Femtosecond, Gigawatt, Near Infrared Laser Pulses From An Amplified, Mode-Locked, Ti:Sapphire Laser, David Anthony Valdés May 2019

Generation And Use Of Femtosecond, Gigawatt, Near Infrared Laser Pulses From An Amplified, Mode-Locked, Ti:Sapphire Laser, David Anthony Valdés

Optical Science and Engineering ETDs

This work modeled the early to middle successes achieved in the field of ultrafast, high peak power optics, beginning with the work of Nobel Prize winners Donna Strickland and Gérard Mourou in 1985. In our work, 100 fs light pulses of around 800 nm were generated by a Ti:Sapphire oscillator, then amplified to approximately 30 GW peak power using a chirped pulse amplification system that included regenerative and multi-pass amplifiers. As a verification of our pulses having high peak powers and ultrashort durations, they were then used to strike water, glass, and a Kerr Cell. Supercontinuum generation was observed as …


Sns Optical Fiber Structure Sensor For Direct Detection Of The Phase Transition In C18h38 N-Alkane Material, Wei Han, Marek Rebow, Xiaokang Lian, Dejun Liu, Gerald Farrell, Qiang Wu, Yuliya Semenova Jan 2019

Sns Optical Fiber Structure Sensor For Direct Detection Of The Phase Transition In C18h38 N-Alkane Material, Wei Han, Marek Rebow, Xiaokang Lian, Dejun Liu, Gerald Farrell, Qiang Wu, Yuliya Semenova

Articles

A singlemode-no-core-singlemode (SNS) fiber structure optical sensor for detecting the solid-liquid phase change in a phase change material: C18H38 n-alkane material (n-octadecane) is proposed and demonstrated. The transmission-type sensor probe consists of a short section of no-core fiber sandwiched between two sections of a singlemode fiber. Phase changes in n-octadecane are accompanied by large step-like variations of its refractive index (RI). Such a large discontinuous change of the n-octadecane’s RI during its phase transition, leads to the corresponding step-like change in the transmitted optical power that can reliably indicate the phase change of the sample in the vicinity of the …


Magnetic Field Sensor Based On A Tri-Microfiber Coupler Ring In Magnetic Fluid And A Fiber Bragg Grating, Fangfang Wei, Dejun Liu, Arun Kumar Mallik, Gerald Farrell, Qiang Wu, Gang-Ding Peng, Yuliya Semenova Jan 2019

Magnetic Field Sensor Based On A Tri-Microfiber Coupler Ring In Magnetic Fluid And A Fiber Bragg Grating, Fangfang Wei, Dejun Liu, Arun Kumar Mallik, Gerald Farrell, Qiang Wu, Gang-Ding Peng, Yuliya Semenova

Articles

In this paper we propose and investigate a novel magnetic field sensor based on a Tri-microfiber coupler combined with magnetic fluid and a fiber Bragg grating (FBG) in a ring. A sensitivity of 1306 pm/mT was experimentally demonstrated in the range of magnetic fields from 0 to 15 mT. The reflection peak in the output spectrum associated with the FBG serves as a reference point allowing to avoid ambiguity in determining the spectral shift induced by the magnetic field. Due to its high sensitivity at low magnetic fields, the proposed structure could be of high interest in low field biosensing …