Open Access. Powered by Scholars. Published by Universities.®

Mining Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Shock Wave Effects

2004

Articles 1 - 1 of 1

Full-Text Articles in Mining Engineering

Compact High-Voltage Generator Of Primary Power Based On Shock Wave Depolarization Of Lead Zirconate Titanate Piezoelectric Ceramics, Sergey I. Shkuratov, Evgueni F. Talantsev, Latika Menon, Henryk Temkin, Jason Baird, Larry L. Altgilbers Jan 2004

Compact High-Voltage Generator Of Primary Power Based On Shock Wave Depolarization Of Lead Zirconate Titanate Piezoelectric Ceramics, Sergey I. Shkuratov, Evgueni F. Talantsev, Latika Menon, Henryk Temkin, Jason Baird, Larry L. Altgilbers

Mining Engineering Faculty Research & Creative Works

The design and performance of a compact explosive-driven high-voltage primary power generator is presented. The generator utilizes a fundamental physical effect—depolarization of ferroelectric materials under longitudinal shock wave impact, when the shock wave is initiated along the polarization vector P. These primary power sources, containing energy-carrying elements made of lead zirconate titanate poled piezoelectric ceramics, with the volume from 0.35 to 3.3 cm3, are capable of producing pulses of high voltage with amplitudes up to 21.4 kV. The amplitude and full width at half-maximum of the high-voltage pulses are directly proportional to the thickness of the energy-carrying element, with coefficients …