Open Access. Powered by Scholars. Published by Universities.®

Mining Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Mining Engineering

Surface Fracturing Of Armatures Within Helical Flux-Compression Generators, Paul Nicholas Worsey, Jason Baird Aug 2016

Surface Fracturing Of Armatures Within Helical Flux-Compression Generators, Paul Nicholas Worsey, Jason Baird

Paul Nicholas Worsey

Tubes of aluminum and of copper filled with C-4 high-explosive were tested during this study of high strain rate effects within thin metallic structures performed as an adjunct to helical flux-compression generator research at the University of Missouri-Rolla. Focusing on the stresses within a relatively thin metallic structure when brisant explosives abutting the structure are detonated, this study directly affects the understanding of flux cutoff and high strain-rate resistivity changes in an expanding armature. The detonation wave is compressive, and the shock waves resulting from its transmission into a thin metallic structure cause both compressive and tensile regions, posing an ...


Optical Diagnostics On Helical Flux Compression Generators, A. A. Neuber, J. C. Dickens, H. Krompholz, M. F. C. Schmidt, Jason Baird, Paul Nicholas Worsey, M. Kristiansen Aug 2016

Optical Diagnostics On Helical Flux Compression Generators, A. A. Neuber, J. C. Dickens, H. Krompholz, M. F. C. Schmidt, Jason Baird, Paul Nicholas Worsey, M. Kristiansen

Paul Nicholas Worsey

Explosively driven magnetic flux compression (MFC) has been object of research for more than three decades. Actual interest in the basic physical picture of flux compression has been heightened by a newly started Department of Defense (DoD) Multi-University Research Initiative. The emphasis is on helical flux compression generators comprising a hollow cylindrical metal liner filled with high explosives and at least one helical coil surrounding the liner. After the application of a seed current, magnetic flux is trapped and high current is generated by moving, i.e., expanding, the liner explosively along the winding of the helical coil. Several key ...


Effects Of Defects On Armatures Within Helical Flux-Compression Generators, Jason Baird, Paul Nicholas Worsey, Mark F. C. Schmidt Aug 2016

Effects Of Defects On Armatures Within Helical Flux-Compression Generators, Jason Baird, Paul Nicholas Worsey, Mark F. C. Schmidt

Paul Nicholas Worsey

Tubes of aluminum and copper filled with C-4 high-explosive were tested during this study of the effects of explosive flaws and voids, their sizes and locations, and of the effects of armature machining tolerances on the expansion characteristics of armatures within helical flux-compression generators. Flaws and voids were introduced into the explosive fill of 6061-T6 aluminum armatures during assembly. The defects were located along the major axis of the fill, midway between the major axis and the explosive/armature interface, and at the interface. The resulting effects on armature expansion were recorded by high-speed framing camera, intensified charge-coupled display (ICCD ...


Surface Fracturing Of Armatures Within Helical Flux-Compression Generators, Paul Nicholas Worsey, Jason Baird Jan 2001

Surface Fracturing Of Armatures Within Helical Flux-Compression Generators, Paul Nicholas Worsey, Jason Baird

Mining and Nuclear Engineering Faculty Research & Creative Works

Tubes of aluminum and of copper filled with C-4 high-explosive were tested during this study of high strain rate effects within thin metallic structures performed as an adjunct to helical flux-compression generator research at the University of Missouri-Rolla. Focusing on the stresses within a relatively thin metallic structure when brisant explosives abutting the structure are detonated, this study directly affects the understanding of flux cutoff and high strain-rate resistivity changes in an expanding armature. The detonation wave is compressive, and the shock waves resulting from its transmission into a thin metallic structure cause both compressive and tensile regions, posing an ...


Effects Of Defects On Armatures Within Helical Flux-Compression Generators, Jason Baird, Paul Nicholas Worsey, Mark F. C. Schmidt Jan 2001

Effects Of Defects On Armatures Within Helical Flux-Compression Generators, Jason Baird, Paul Nicholas Worsey, Mark F. C. Schmidt

Mining and Nuclear Engineering Faculty Research & Creative Works

Tubes of aluminum and copper filled with C-4 high-explosive were tested during this study of the effects of explosive flaws and voids, their sizes and locations, and of the effects of armature machining tolerances on the expansion characteristics of armatures within helical flux-compression generators. Flaws and voids were introduced into the explosive fill of 6061-T6 aluminum armatures during assembly. The defects were located along the major axis of the fill, midway between the major axis and the explosive/armature interface, and at the interface. The resulting effects on armature expansion were recorded by high-speed framing camera, intensified charge-coupled display (ICCD ...


Optical Diagnostics On Helical Flux Compression Generators, A. A. Neuber, J. C. Dickens, H. Krompholz, M. F. C. Schmidt, Jason Baird, Paul Nicholas Worsey, M. Kristiansen Oct 2000

Optical Diagnostics On Helical Flux Compression Generators, A. A. Neuber, J. C. Dickens, H. Krompholz, M. F. C. Schmidt, Jason Baird, Paul Nicholas Worsey, M. Kristiansen

Mining and Nuclear Engineering Faculty Research & Creative Works

Explosively driven magnetic flux compression (MFC) has been object of research for more than three decades. Actual interest in the basic physical picture of flux compression has been heightened by a newly started Department of Defense (DoD) Multi-University Research Initiative. The emphasis is on helical flux compression generators comprising a hollow cylindrical metal liner filled with high explosives and at least one helical coil surrounding the liner. After the application of a seed current, magnetic flux is trapped and high current is generated by moving, i.e., expanding, the liner explosively along the winding of the helical coil. Several key ...