Open Access. Powered by Scholars. Published by Universities.®

Mining Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Explosives Engineering

Mining Engineering Faculty Research & Creative Works

Series

2012

Articles 1 - 1 of 1

Full-Text Articles in Mining Engineering

Note: Utilizing Pb(Zr 0.95ti 0.05)O₃ Ferroelectric Ceramics To Scale Down Autonomous Explosive-Driven Shock-Wave Ferroelectric Generators, S. I. Shkuratov, Jason Baird, E. F. Talantsev Jul 2012

Note: Utilizing Pb(Zr 0.95ti 0.05)O₃ Ferroelectric Ceramics To Scale Down Autonomous Explosive-Driven Shock-Wave Ferroelectric Generators, S. I. Shkuratov, Jason Baird, E. F. Talantsev

Mining Engineering Faculty Research & Creative Works

Further miniaturization of recently designed autonomous ferroelectric generators (FEGs) S. I. Shkuratov, J. Baird, and E. F. Talantsev, Rev. Sci. Instrum. 82, 086107 (2011), which are based on the effect of explosive-shock-wave depolarization of poled ferroelectrics is achieved. The key miniaturization factor was the utilization of high-energy density Pb(Zr0.95Ti0.05)O3 (PZT 955) ferroelectric ceramics as energy-carrying elements of FEGs instead of the previously used Pb(Zr0.52Ti0.48)O3 (PZT 5248). A series of experiments demonstrated that FEGs based on smaller PZT 955 ferroelectric elements are capable of producing the same output voltage as those …