Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Structurally Supported Cell-Laden Scaffolds For Bone Tissue Regeneration, Stephen William Sawyer Dec 2018

Structurally Supported Cell-Laden Scaffolds For Bone Tissue Regeneration, Stephen William Sawyer

Dissertations - ALL

Due to challenges associated with current clinical techniques used to treat bone defects, there has been an increased focus on finding a tissue engineered solution. However, while great progress in this field has been achieved, researchers have yet to suitably combine the proper biological and structural environments needed to serve as a complete bone tissue substitute that is comparable to modern clinical solutions.

To achieve the goal of creating a model bone tissue substitute which could eventually serve as a viable therapy for bone trauma, be it caused by congenital medical conditions, age related diseases or high impact forces, three …


Chemically Modified Monolayer Surfaces Influence Valvular Interstitial Cell Attachment And Differentiation For Heart Valve Tissue Engineering, Matthew N. Rush Dec 2018

Chemically Modified Monolayer Surfaces Influence Valvular Interstitial Cell Attachment And Differentiation For Heart Valve Tissue Engineering, Matthew N. Rush

Nanoscience and Microsystems ETDs

As a cell mediated-process, valvular heart disease (VHD) results in significant morbidity and mortality world-wide. In the US alone, valvular heart disease VHD is estimated to affect 2.5% of the population with a disproportionate impact on an increasing elderly populous. It is well understood that the primary driver for valvular calcification is the differentiation of valvular interstitial cells (VICs) into an osteoblastic-like phenotype. However, the factors leading to the onset of osteoblastic-like VICs (obVICs) and resulting calcification are not fully understood and a more complete characterization of VIC differentiation and phenotypic change is required before treatment of valve disease or …


Superelastic And Ph-Responsive Degradable Dendrimer Cryogels Prepared By Cryo-Aza-Michael Addition Reaction, Juan Wang, Hu Yang Dec 2018

Superelastic And Ph-Responsive Degradable Dendrimer Cryogels Prepared By Cryo-Aza-Michael Addition Reaction, Juan Wang, Hu Yang

Chemical and Biochemical Engineering Faculty Research & Creative Works

Dendrimers exhibit super atomistic features by virtue of their well-defined discrete quantized nanoscale structures. Here, we show that hyperbranched amine-terminated polyamidoamine (PAMAM) dendrimer G4.0 reacts with linear polyethylene glycol (PEG) diacrylate (575 g/mol) via the aza-Michael addition reaction at a subzero temperature (-20 °C), namely cryo-aza-Michael addition, to form a macroporous superelastic network, i.e., dendrimer cryogel. Dendrimer cryogels exhibit biologically relevant Young's modulus, high compression elasticity and super resilience at ambient temperature. Furthermore, the dendrimer cryogels exhibit excellent rebound performance and do not show significant stress relaxation under cyclic deformation over a wide temperature range (-80 to 100 °C). The …


Determinants Of Multi-Scale Patterning In Growth Plate Cartilage, Alek Erickson May 2018

Determinants Of Multi-Scale Patterning In Growth Plate Cartilage, Alek Erickson

Theses & Dissertations

ABSTRACT

Functional architectures of complex adaptive systems emerge by dynamic control over properties of individual components. During skeletal development, growth plate cartilage matches bone geometries to body plan requisites by spatiotemporally regulating chondrocyte actions. Bone growth potential is managed by the proximodistal patterning of chondrocyte populations into differentiation zones, while growth vectors are specified by the unique columnar arrangement of clonal groups. Chondrocyte organization at both tissue and cell levels is influenced by a cartilage-wide communication network that relies on zone-specific release and interpretation of paracrine signals. Despite genetic characterization of signaling interactions necessary for cartilage maturation, the regulatory mechanisms …


A Bioreactor For Conditioning Tissue Engineered Heart Valves, Claire Brougham, Francisco Almeida, Fergal J O'Brien Jan 2018

A Bioreactor For Conditioning Tissue Engineered Heart Valves, Claire Brougham, Francisco Almeida, Fergal J O'Brien

Other resources

No abstract provided.


Applications Of Low Field Magnetic Resonance Imaging, Muhammad Waqas Jan 2018

Applications Of Low Field Magnetic Resonance Imaging, Muhammad Waqas

University of the Pacific Theses and Dissertations

Magnetic resonance imaging is a non-invasive imaging modality that is used to produce detailed images of soft tissues within the human body. Typically, MRI scanners used in the clinical setting are high field systems because they have a magnetic field strength greater than 1.5 Tesla. The high magnetic field offers the benefit of high spatial resolution and high SNR. However, low filed systems can also produce high resolution MR images with the added benefit of imaging stiffer samples. In this study, a low field 0.5 T MR system was used to image various samples to demonstrate the capability of the …


Using Crosslinked Hyaluronic Acid (Ha) And Collagen Scaffolds With Sustained Brain-Derived Neurotrophic Factor (Bdnf) Release For Post-Sci Nerve Regeneration, Panth Doshi Jan 2018

Using Crosslinked Hyaluronic Acid (Ha) And Collagen Scaffolds With Sustained Brain-Derived Neurotrophic Factor (Bdnf) Release For Post-Sci Nerve Regeneration, Panth Doshi

Undergraduate Research Posters

Traumatic events resulting in spinal cord injuries (SCIs) often leave people paralyzed or with partial loss of motor function. The physical disabilities arising from traumatic events prevent people from functioning at the same level as pre-injury. My work aims to identify a plausible method to overcome the inhibitory post-SCI environment and to regenerate nervous tissue in order to restore neural function and, subsequently, motor function. I identified components of a new, hypothetical nerve scaffold based on the immune response after SCIs and the efficacy of currently used scaffolds for nerve regeneration. Hyaluronic acid (HA) polymer scaffolds and collagen-based scaffolds are …