Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Degradation Of High Performance Polymeric Fibers: Effects Of Sonication, Humidity And Temperature On Poly (P-Phenylene Terephthalamide) Fibers, Nelyan Lopez-Perez Dec 2016

Degradation Of High Performance Polymeric Fibers: Effects Of Sonication, Humidity And Temperature On Poly (P-Phenylene Terephthalamide) Fibers, Nelyan Lopez-Perez

Open Access Theses

High performance fibers are characterized by properties such as high strength and resistance to chemicals and heat. Due to their outstanding properties, they are used on applications under harsh environments that can degrade and decrease their performance. Fiber degradation due to different chemical and mechanical factors, is a process that begins at a microstructural level. Changes in the polymer’s chemical or physical structure can alter their mechanical properties. Knowledge of the structure-properties relationship and the effects of environmental chemical and physical factors over time, is crucial for the improvement and development of high performance fibers.

In this study ballistic fibers …


Moisture And Temperature Effects On Interface Mechanical Properties For External Bonding, Tamon Ueda, Justin Shrestha, Khuram Rashid, Dawei Zhang Jun 2016

Moisture And Temperature Effects On Interface Mechanical Properties For External Bonding, Tamon Ueda, Justin Shrestha, Khuram Rashid, Dawei Zhang

International Conference on Durability of Concrete Structures

In order to develop rational guidelines for strengthening by external bonding, it is necessary to clarify longterm performance of interfacial bonding property. In this paper, moisture effects on bonding properties at FRP–concrete interface and temperature/moisture effects on bonding properties at PCM–concrete interface are presented. Shear bond strength of FRP–concrete interface is affected by moisture because resin–concrete adhesion strength is affected by moisture. Among tested CFRP external bonding systems, wet-layup CFRP systems all show the strength reduction, while prefabricated CFRP systems all show the strength increase after immersion. The bond stress–slip relationship and interfacial fracture energy also change, which can explain …