Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Heuristics For Lagrangian Relaxation Formulations For The Unit Commitment Problem, Stephen Opeyemi Fatokun Aug 2023

Heuristics For Lagrangian Relaxation Formulations For The Unit Commitment Problem, Stephen Opeyemi Fatokun

Doctoral Dissertations

The expansion of distributed energy resources (DER), demand response (DR), and virtual bidding in many power systems and energy markets are creating new challenges for unit commitment (UC) and economic dispatch (ED) techniques. Instead of a small number of traditionally large generators, the power system resource mix is moving to one with a high percentage of a large number of small units. These can increase the number of similar or identical units, leading to chattering (switching back and forth among committed units between iterations). This research investigates alternative and scalable ways of increasing the high penetration of these resources.

First, …


Green Scheduling For Radiant Systems In Buildings, Truong X. Nghiem, Madhur Behl, George J. Pappas, Rahul Mangharam Jan 2013

Green Scheduling For Radiant Systems In Buildings, Truong X. Nghiem, Madhur Behl, George J. Pappas, Rahul Mangharam

Truong X Nghiem

In this report we look at the problem of peak power reduction for buildings with electric radiant floor heating systems. Uncoordinated operation of a multi-zone radiant floor heating system can result in temporally correlated electricity demand surges or peaks in the building’s electricity consumption. As peak power prices are 200-400 times that of the nominal rate, this uncoordinated activity can result in high electricity costs and expensive system operation. We have previously presented green scheduling as an approach for reducing the aggregate peak power consumption in buildings while ensuring that indoor thermal comfort is always maintained. This report extends the …


Green Scheduling For Radiant Systems In Buildings, Truong X. Nghiem, Madhur Behl, George J. Pappas, Rahul Mangharam Oct 2012

Green Scheduling For Radiant Systems In Buildings, Truong X. Nghiem, Madhur Behl, George J. Pappas, Rahul Mangharam

Madhur Behl

In this report we look at the problem of peak power reduction for buildings with electric radiant floor heating systems. Uncoordinated operation of a multi-zone radiant floor heating system can result in temporally correlated electricity demand surges or peaks in the building’s electricity consumption. As peak power prices are 200-400 times that of the nominal rate, this uncoordinated activity can result in high electricity costs and expensive system operation. We have previously presented green scheduling as an approach for reducing the aggregate peak power consumption in buildings while ensuring that indoor thermal comfort is always maintained. This report extends the …


Green Scheduling For Radiant Systems In Buildings, Truong Nghiem, Madhur Behl, George Pappas, Rahul Mangharam Oct 2012

Green Scheduling For Radiant Systems In Buildings, Truong Nghiem, Madhur Behl, George Pappas, Rahul Mangharam

Rahul Mangharam

In this report we look at the problem of peak power reduction for buildings with electric radiant floor heating systems. Uncoordinated operation of a multi-zone radiant floor heating system can result in temporally correlated electricity demand surges or peaks in the building’s electricity consumption. As peak power prices are 200-400 times that of the nominal rate, this uncoordinated activity can result in high electricity costs and expensive system operation. We have previously presented green scheduling as an approach for reducing the aggregate peak power consumption in buildings while ensuring that indoor thermal comfort is always maintained. This report extends the …


Two-Step Optimal Thermal Generation Scheduling, B Fardanesh, F. Eugenio Villaseca Jul 2012

Two-Step Optimal Thermal Generation Scheduling, B Fardanesh, F. Eugenio Villaseca

F. Eugenio Villaseca

A new approach to the solution of the optimal thermal generation scheduling problem is presented. The problem is solved in two steps. As a first step, the optimal production schedule for the next day is obtained based on a daily load forecast, reserve capacity requirements, and present status of generating units. The second-step algorithm uses the results of the first step and adjusts the previous schedule to meet new constraints developed during the course of the day. Variable truncation dynamic programming is proposed as a new method to reduce computation effort. To eliminate the need for solving the entire problem …


Two-Step Optimal Thermal Generation Scheduling, B Fardanesh, F. Eugenio Villaseca May 1986

Two-Step Optimal Thermal Generation Scheduling, B Fardanesh, F. Eugenio Villaseca

Electrical and Computer Engineering Faculty Publications

A new approach to the solution of the optimal thermal generation scheduling problem is presented. The problem is solved in two steps. As a first step, the optimal production schedule for the next day is obtained based on a daily load forecast, reserve capacity requirements, and present status of generating units. The second-step algorithm uses the results of the first step and adjusts the previous schedule to meet new constraints developed during the course of the day. Variable truncation dynamic programming is proposed as a new method to reduce computation effort. To eliminate the need for solving the …