Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Nondestructive Testing System Design For Biological Product Based On Vibration Signal Analysis Of Acceleration Sensor, Xiaohao Li, Tao Shen Jan 2017

Nondestructive Testing System Design For Biological Product Based On Vibration Signal Analysis Of Acceleration Sensor, Xiaohao Li, Tao Shen

Department of Mechanical and Materials Engineering: Faculty Publications

In order to reduce the disadvantages of current biological product quality testing methods, taking the quality testing in cocoon trade markets as an example, this paper has proposed a quality nondestructive testing method for biological products based on the analysis of vibration signal from acceleration sensors. According to the wavelet transformation analysis on the random vibration signal acquired from the acceleration sensor, the random vibration signal related to the silkworm chrysalis quality has been analyzed and reconstructed; then the characteristic values such as: mean value, variance, mean square root, waveform index, pulse factor, and so on of the quality signal …


Experimental Verification Of The Linear Relationship Between Stress And The Reciprocal Of The Peak Barkhausen Voltage In Astm A36 Steel, Orfeas Kypris, Ikenna Nlebedim, David Jiles Jan 2012

Experimental Verification Of The Linear Relationship Between Stress And The Reciprocal Of The Peak Barkhausen Voltage In Astm A36 Steel, Orfeas Kypris, Ikenna Nlebedim, David Jiles

Orfeas Kypris

This study presents an experimental validation of a model theory for determining the relationship between a nondestructive measurement parameter and a property of interest. It was found that the reciprocal of the peak envelope amplitude of the Barkhausen emission voltage follows a linear relationship with stress. A linear relationship between stress and the reciprocal of the root mean square voltage was also obtained. These observations represent an important step towards improving the use of Barkhausen signals for magnetic non-destructive evaluation of stress as a function of depth in ferromagnetic load bearing structures.