Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Using Molecular Dynamics Simulations To Decipher Mechanistic Details Of Biomolecular Processes Of Biology And Biotechnology Oriented Applications, Adithya Polasa Dec 2022

Using Molecular Dynamics Simulations To Decipher Mechanistic Details Of Biomolecular Processes Of Biology And Biotechnology Oriented Applications, Adithya Polasa

Graduate Theses and Dissertations

Researchers in chemistry and biology often utilize computer simulations, in conjunction with experimental data, to model and predict the structures, energies, kinetics, processes, and functions of the systems that are their focus of study, ranging from single molecules to whole viruses. Here, we use molecular dynamics (MD) techniques to gain a deeper understanding of biomolecular processes in biology and biotechnology-oriented applications. Using a mixture of equilibrium and non-equilibrium MD simulations, this work describes the insertion process of YidC at the atomic level. In order to better comprehend the insertion process, several docking models of YidC-Pf3 in the lipid bilayer were …


Passive Cooling Analysis Of An Electronic Chipset Using Nanoparticles And Metal-Foam Composite Pcm: An Experimental Study, Faisal Hassan, Abid Hussain, Furqan Jamil, Adeel Arshad, Hafiz Muhammad Ali Nov 2022

Passive Cooling Analysis Of An Electronic Chipset Using Nanoparticles And Metal-Foam Composite Pcm: An Experimental Study, Faisal Hassan, Abid Hussain, Furqan Jamil, Adeel Arshad, Hafiz Muhammad Ali

Research outputs 2022 to 2026

Thermal management of electronic components is critical for long-term reliability and continuous operation, as the over-heating of electronic equipment leads to decrement in performance. The novelty of the current experimental study is to investigate the passive cooling of electronic equipment, by using nano-enriched phase change material (NEPCM) with copper foam having porosity of 97 %. The phase change material of PT-58 was used with graphene nanoplatelets (GNPs) and magnesium oxide (MgO) nanoparticles (NPs), having concentrations of 0.01 wt. % and 0.02 wt. %. Three power levels of 8 W, 16 W, and 24 W, with corresponding heating inputs of 0.77 …


Laser-Induced Galfenol Embedded Multi-Layer Graphene-Oxide In Solution, Devyn Duryea, Nirmala Kandadai Sep 2022

Laser-Induced Galfenol Embedded Multi-Layer Graphene-Oxide In Solution, Devyn Duryea, Nirmala Kandadai

Electrical and Computer Engineering Faculty Publications and Presentations

The proposed work demonstrates the direct synthesis of nanomaterial-embedded laser-induced few-layer graphene-oxide by directly ablating galfenol in a water-based solution for the first time. Laser-induced multilayer graphene-oxide (GO) embedded with galfenol (gallium–iron alloy) nanoparticles (NPs) is created through a method of direct laser inscription of bulk galfenol in deionized (DI) water with femtosecond laser ablation. The NP-embedded GO is achieved by irradiating a near-infrared (near-IR) femtosecond laser at 1040 nm on a bulk galfenol material submerged in a solution comprising DI water and a small concentration (5%/wt.) of polyvinylpyrrolidone followed by a second ablation in pure DI water. Results show …


Spray Deposition Of Sustainable Plant Based Graphene In Thermosetting Carbon Fiber Laminates For Mechanical, Thermal, And Electrical Properties, Daniel W. Mulqueen, Siavash Sattar, Thienan Le, Oleksandr G. Kravchenko Jan 2022

Spray Deposition Of Sustainable Plant Based Graphene In Thermosetting Carbon Fiber Laminates For Mechanical, Thermal, And Electrical Properties, Daniel W. Mulqueen, Siavash Sattar, Thienan Le, Oleksandr G. Kravchenko

Mechanical & Aerospace Engineering Faculty Publications

Graphene has generated substantial interest as a filler due to its exceptional strength, flexibility, and conductivity but faces obstacles in supply and implementation. A renewable, plant-based graphene nanoparticle (pGNP) presents a more accessible filler with the same properties as mineral graphenes. In this study, we examine the effects of pGNP, which was sprayed on a carbon fiber/epoxy prepreg at loadings from 1.1 to 4.2 g/m2. The study considered the mechanical, thermal, and electrical properties of pGNP-composite. An even particle dispersion was achieved using a spray application of pGNP in a water/alcohol suspension with the addition of surfactants and …