Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Process-Property-Microstructure Relationships In Laser-Powder Bed Fusion Of 420 Stainless Steel., Subrata Deb Nath Dec 2018

Process-Property-Microstructure Relationships In Laser-Powder Bed Fusion Of 420 Stainless Steel., Subrata Deb Nath

Electronic Theses and Dissertations

Laser-powder bed fusion (L-PBF) is an additive manufacturing technique for fabricating metal components with complex design and customized features. However, only a limited number of materials have been widely studied using L-PBF. AISI 420 stainless steel, an alloy with a useful combination of high strength, hardness, and corrosion resistance, is an example of one such material where few L-PBF investigations have emerged to date. In this dissertation, L-PBF experiments were conducted using 420 stainless steel powders to understand the effects of chemical composition, particle size distribution and processing parameters on ensuing physical, mechanical and corrosion properties and microstructure in comparison …


Microinjection Molding Of Carbon Filled Polymer Composites, Shengtai Zhou Aug 2018

Microinjection Molding Of Carbon Filled Polymer Composites, Shengtai Zhou

Electronic Thesis and Dissertation Repository

There has been increasing demand for microparts in the areas of electronics, automotive, biomedical and micro-electro-mechanical systems. Microinjection molding (μIM) is becoming an important technology to fabricate miniature products or components to satisfy the ever-increasing needs of the above industries. Polymers and polymeric composites are ubiquitously adopted as molding materials due to their weight advantage, good processability and excellent resistance to corrosion.

Earlier studies have been primarily focused on the μIM of unfilled thermoplastics; however, microparts with multi-functionalities, such as electrical, thermal and mechanical properties are always accommodated by using multi-functional filler loaded polymer composites. Recently, μIM of carbon nanotubes …


Material-Process-Property Relationships Of 17-4 Stainless Steel Fabricated By Laser-Powder Bed Fusion Followed By Hot Isostatic Pressing., Harish Irrinki Aug 2018

Material-Process-Property Relationships Of 17-4 Stainless Steel Fabricated By Laser-Powder Bed Fusion Followed By Hot Isostatic Pressing., Harish Irrinki

Electronic Theses and Dissertations

17-4 PH stainless steel is commonly used in medical, tooling, automotive, chemical and aerospace industries due to its excellent strength and corrosion properties. Additive manufacturing processes such as laser-powder bed fusion (L-PBF) have gained attention and importance due to the potential to produce complex-shaped three-dimensional parts for various industries. In order to manufacture three-dimensional components from 17-4 PH stainless steel powder using L-PBF, it is critical for design and manufacturing engineers to have an awareness of various material options and corresponding processing and post-processing conditions to obtain useful mechanical properties from the process. The goal of this dissertation is to …


Evaluation Of Metallurgical And Mechanical Properties Of Alsi10mg Produced By Selective Laser Melting, Luke J. Suttey Apr 2018

Evaluation Of Metallurgical And Mechanical Properties Of Alsi10mg Produced By Selective Laser Melting, Luke J. Suttey

Graduate Theses & Non-Theses

Selective laser melting (SLM) additive manufacturing (AM) of metal powders has long been a focus in the study of AM due to the possibility of weight reduction, complex shape formation, and production cost savings. Although applicable to a variety of metals SLM AM of the AlSi10Mg alloy was studied in an attempt to characterize the effect of processing parameter and build angle variation on the final microstructural, fractographic, and mechanical properties of parts produced without any thermal post-processing techniques. Research was conducted on five build angles (0°, 30°, 45°, 60°, and 90°), and three Global Energy Densities (GED) (37.15, 45.39, …


Influence Of Natural Convection During Dendritic Array Growth Of Metal Alloys (Gradient Freeze Directional Solidification), Suyog N. Mahajan Jan 2018

Influence Of Natural Convection During Dendritic Array Growth Of Metal Alloys (Gradient Freeze Directional Solidification), Suyog N. Mahajan

ETD Archive

Purpose of this study was to examine the microstructural evolution of primary dendrites during Gradient Freeze Directional Solidification process in cylindrical Pb-5.8% Sb alloy samples to generate the ground- based research data to support a future microgravity experiment on the Space Station in a convection free environment. Pb-5.8Sb was selected for this study because of its ease of processing and availability of physical property data which will be required for predicting the dendrite morphology parameters, such as, primary dendrite spacing and dendrite trunk diameter. This alloy is also susceptible to thermosolutal convection caused by density inversion of the met in …


Characterization Of Directionally Solidified Cast Iron, Subhojit Chakraborty Jan 2018

Characterization Of Directionally Solidified Cast Iron, Subhojit Chakraborty

All ETDs from UAB

Cast iron solidifies with various morphologies of the graphite phase, which directly influences its mechanical behavior. Hence, it is crucial to control the graphite morphol- ogy in order to tailor the properties of the iron to specific applications. This makes it crucial to understand the effect of solidification velocity and composition, the two main factors affecting graphite morphology. To study the influence of velocity and composi- tion, particularly nodularizing elements (Mg) and cerium (Ce), a number of batches of iron were produced. The majority of analysis was conducted on those batches where the carbon equivalent was very close to the …


Multi-Scale Investigation Of Microstructure, Fiber-Matrix Bond, And Mechanical Properties Of Ultra-High Performance Concrete, Zemei Wu Jan 2018

Multi-Scale Investigation Of Microstructure, Fiber-Matrix Bond, And Mechanical Properties Of Ultra-High Performance Concrete, Zemei Wu

Doctoral Dissertations

"The main objective of this study is to provide new insights into enhancing fiber-matrix bond and mechanical properties of ultra-high performance concrete (UHPC). Three main strategies were investigated: 1) use of supplementary cementitious materials; 2) use of nano-particles; and 3) use of deformed fibers. A multi-scale investigation involving the evaluation of non-fibrous UHPC mortar phase (matrix), fiber-matrix interface phase, and then UHPC composite material was undertaken to determine microstructural characteristics, fiber bond to matrix, and key mechanical properties of the UHPC matrix and UHPC. Test results indicate that the incorporation of 10%-20% silica fume effectively improved the fiber-matrix bond and …


Investigation Of Microstructure And Mechanical Properties By Direct Metal Deposition, Jingwei Zhang Jan 2018

Investigation Of Microstructure And Mechanical Properties By Direct Metal Deposition, Jingwei Zhang

Doctoral Dissertations

"Microstructure and properties of Direct Metal Deposition (DMD) parts are very crucial to meeting industrial requirements of parts quality. Prediction, and control of microstructure and mechanical properties have attracted much attention during conventional metal manufacturing process under different conditions. However, there is few investigations focused on microstructure simulation and mechanical properties control under different process parameters during DMD process. This dissertation is intended to develop a multiscale model to investigate Ti6Al4V grain structure development and explore Ti6Al4V based functionally graded material (FGM) deposit properties during DMD process. The first research topic is to investigate and develop a cellular automaton-finite element …