Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical properties

Mechanical Engineering

Series

Marquette University

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Elimination Of Extraordinarily High Cracking Susceptibility Of Aluminum Alloy Fabricated By Laser Powder Bed Fusion, Holden Hyer, Le Zhou, Sharon Park, Thinh Huynh, Abhishek Mehta, Saket Thapliyal, Rajiv S. Mishra, Yongho Sohn Mar 2022

Elimination Of Extraordinarily High Cracking Susceptibility Of Aluminum Alloy Fabricated By Laser Powder Bed Fusion, Holden Hyer, Le Zhou, Sharon Park, Thinh Huynh, Abhishek Mehta, Saket Thapliyal, Rajiv S. Mishra, Yongho Sohn

Mechanical Engineering Faculty Research and Publications

Using the calculation of phase diagrams approach and Scheil solidification modeling, the Al-2.5Mg-1.0Ni-0.4Sc-0.1Zr alloy was designed, intentionally with an extraordinarily high cracking susceptibility, making it prime for solidification cracking during laser powder bed fusion. This study demonstrates the ability to mitigate even the most extreme solidification cracking tendencies in aluminum alloys with only minor alloying additions of Sc and Zr, 0.5 wt.% max. Furthermore, by employing a simple direct ageing heat treatment, good tensile mechanical properties were observed with a yield strength of 308 MPa, an ultimate tensile strength of 390 MPa, and a total elongation of 11%.


Additive Manufacturing And Mechanical Properties Of The Dense And Crack Free Zr-Modified Aluminum Alloy 6061 Fabricated By The Laser-Powder Bed Fusion, Abhishek Mehta, Le Zhou, Thinh Huynh, Sharon Park, Holden Hyer, Shutao Song, Yunali Bai, D. Devin Imholte, Nicolas E. Woolstenhulme, Daniel M. Wachs, Yongho Sohn May 2021

Additive Manufacturing And Mechanical Properties Of The Dense And Crack Free Zr-Modified Aluminum Alloy 6061 Fabricated By The Laser-Powder Bed Fusion, Abhishek Mehta, Le Zhou, Thinh Huynh, Sharon Park, Holden Hyer, Shutao Song, Yunali Bai, D. Devin Imholte, Nicolas E. Woolstenhulme, Daniel M. Wachs, Yongho Sohn

Mechanical Engineering Faculty Research and Publications

For additive manufacturing such as laser powder bed fusion (LPBF), commercial aluminum alloy (AA) 6061 is typically considered unsuitable due to formation of solidification cracking and/or excessive porosity. In this study, to improve buildability/printability of AA6061, 1 wt% of Zr was alloyed to produce Zr-modified AA6061 by LPBF. Powders of unmodified and Zr-modified AA6061 were produced by gas atomization, and utilized as a feed-stock for the LPBF to fabricate specimens for microstructural examination and mechanical testing. The as-built unmodified AA6061 exhibited poor printability due to formation of cracks and porosity in the microstructure regardless of LPBF parameters. However, the Zr-modified …


Investigation Of Through Thickness Microstructure And Mechanical Properties In Friction Stir Welded 7n01 Aluminum Alloy Plate, Xingxin Zhao, Zhiyong Yang, Joseph P. Domblesky, Jianmin Han, Zhiqiang Li, Xiaolong Liu Jul 2019

Investigation Of Through Thickness Microstructure And Mechanical Properties In Friction Stir Welded 7n01 Aluminum Alloy Plate, Xingxin Zhao, Zhiyong Yang, Joseph P. Domblesky, Jianmin Han, Zhiqiang Li, Xiaolong Liu

Mechanical Engineering Faculty Research and Publications

An on-going problem in friction stir welded (FSW) joints used in the high-speed train sector is that the microstructure and mechanical properties can significantly vary in thick sections. Because inhomogeneous properties can reduce weld efficiency and degrade service performance, it is of some interest to understand how inhomogeneous properties can develop in FSW welds made from precipitation hardening alloys such as 7N01. In the current study, butt welds were made using 12 mm thick plates and then sectioned perpendicular to the weld line. Five 2.2 mm thick slices were cut from a section and used to measure tensile properties access …


Effect Of Original Layer Thicknesses On The Interface Bonding And Mechanical Properties Of Ti-Al Laminate Composites, Minyu Fan, Joseph P. Domblesky, Kai Jin, Liang Qin, Shengqiang Cui, Xunzhong Guo, Naksoo Kim, Jie Tao Jun 2016

Effect Of Original Layer Thicknesses On The Interface Bonding And Mechanical Properties Of Ti-Al Laminate Composites, Minyu Fan, Joseph P. Domblesky, Kai Jin, Liang Qin, Shengqiang Cui, Xunzhong Guo, Naksoo Kim, Jie Tao

Mechanical Engineering Faculty Research and Publications

It is of great significance in high-temperature aeroengine applications for large-surface-area TiAl laminate composites to be fabricated into Ti-Al3Ti parts by plastic forming and subsequent vacuum hot pressing. Then the original layer thicknesses have an important influence on the interface bonding and mechanical properties of TiAl laminate composites, but only few reports about it have been published so far. In the present study, vacuum hot pressing was employed to fabricate TiAl laminate composites using Ti and Al foils of different thickness. The resulting interface bond and mechanical properties of TiAl laminate composites were then studied to determine the …