Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Insect Antennae As Bioinspirational Superstrong Fiber-Based Microfluidics, Griffin J. Donley May 2022

Insect Antennae As Bioinspirational Superstrong Fiber-Based Microfluidics, Griffin J. Donley

All Theses

Nature is frequently turned to for inspiration for the creation of new materials. Insect antennae are hollow, blood-filled fibers with complex shape, and are cantilevered at the head. The antenna is muscle-free, but the insect can controllably flex, twist, and maneuver it laterally. To explain this behavior, a comparative study of structural and tensile properties of the antennae of Periplaneta americana (American cockroach), Manduca sexta (Carolina hawkmoth), and Vanessa cardui (painted lady butterfly) was performed. These antennae demonstrate a range of distinguishable tensile properties, responding either as brittle fibers (Manduca sexta) or strain-adaptive fibers that stiffen when stretched (Vanessa cardui …


Covalently Crosslinked Organic/Inorganic Hybrid Biomaterials For Bone Tissue Engineering Applications, Dibakar Mondal Feb 2018

Covalently Crosslinked Organic/Inorganic Hybrid Biomaterials For Bone Tissue Engineering Applications, Dibakar Mondal

Electronic Thesis and Dissertation Repository

Scaffolds are key components for bone tissue engineering and regeneration. They guide new bone formation by mimicking bone extracellular matrix for cell recruitment and proliferation. Ideally, scaffolds for bone tissue engineering need to be osteoconductive, osteoinductive, porous, degradable and mechanically competent. As a single material can not provide all these requirements, composites of several biomaterials are viable solutions to combine various properties. However, conventional composites fail to fulfil these requirements due to their distinct phases at the microscopic level. Organic/inorganic (O/I) class II hybrid biomaterials, where the organic and inorganic phases are chemically crosslinked on a molecular scale, hence the …


Spray-Dried Cellulose Nanofibril-Reinforced Polypropylene Composites For Extrusion-Based Additive Manufacturing, Lu Wang Dec 2017

Spray-Dried Cellulose Nanofibril-Reinforced Polypropylene Composites For Extrusion-Based Additive Manufacturing, Lu Wang

Electronic Theses and Dissertations

Compared to conventional manufacturing process, additive manufacturing (AM) offers free-form design, lighter and more ergonomic products, short lead time and less waste. Extrusion-based AM can be used to print thermoplastics. However, extrusion-based AM has processing challenges in printing semi-crystalline thermoplastics, for instance, polypropylene (PP). Cellulose nanofibrils (CNF) are one type of cellulose nanofibers that are produced from pulp fibers. CNF has extraordinary properties which make it an ideal candidate to reinforce polymers. Spray-dried CNF (SDCNF) is able to be incorporated into thermoplastic matrices without modifying conventional processing procedures.

The mechanical properties of 3D printed plastic parts have been considered significantly …


Sol-Gel Derived Biodegradable And Bioactive Organic-Inorganic Hybrid Biomaterials For Bone Tissue Engineering, Bedilu A. Allo Apr 2013

Sol-Gel Derived Biodegradable And Bioactive Organic-Inorganic Hybrid Biomaterials For Bone Tissue Engineering, Bedilu A. Allo

Electronic Thesis and Dissertation Repository

Treatments of bone injuries and defects have been largely centered on replacing the lost bone with tissues of allogeneic or xenogeneic sources as well as synthetic bone substitutes, which in all lead to limited degree of structural and functional recovery. As a result, tissue engineering has emerged as a viable technology to regenerate the structures and therefore recover the functions of bone tissue rather than replacement alone. Hence, the current strategies of bone tissue engineering and regeneration rely on bioactive scaffolds to mimic the natural extracellular matrix (ECM) as templates onto which cells attach, multiply, migrate and function.

In this …


Lumbar Vertebral Density And Mechanical Properties In Aged Ovariectomized Rats Treated With Estrogen And Norethindrone Or Norgestimate, Carla Vanin, Neil Maclusky, Debbie Chachra, Mehran Kasra, Marc Grynpas, Robert Casper Jul 2012

Lumbar Vertebral Density And Mechanical Properties In Aged Ovariectomized Rats Treated With Estrogen And Norethindrone Or Norgestimate, Carla Vanin, Neil Maclusky, Debbie Chachra, Mehran Kasra, Marc Grynpas, Robert Casper

Debbie Chachra

OBJECTIVE: This study was designed to investigate the effects of estrogen alone or combined with two different progestins, norethindrone or norgestimate, on bone density and compressive mechanical properties in an aged rat model.

STUDY DESIGN: Twenty 11-month-old female Sprague-Dawley rats were sham operated (intact control) and 80 wee overiectomized. Three groups of 20 ovariectomized rats were implanted with Silastic silicon rubber (Dow Corning, Midland, Mich.) capsules containing 5% estradiol (wt/wt) in cholesterol. All rats in the intact control (group 1) and the ovariectomized (group 2) and the first of the overiectomized plus estrogen (group 3) groups were injected subcutaneously daily …


The Influence Of Heterogeneous Meninges On The Brain Mechanics Under Primary Blast Loading, Linxia Gu, Mehdi S. Chafi, Shailesh Ganpule, Namas Chandra Apr 2012

The Influence Of Heterogeneous Meninges On The Brain Mechanics Under Primary Blast Loading, Linxia Gu, Mehdi S. Chafi, Shailesh Ganpule, Namas Chandra

Department of Mechanical and Materials Engineering: Faculty Publications

In the modeling of brain mechanics subjected to primary blast waves, there is currently no consensus on how many biological components to be used in the brain–meninges–skull complex, and what type of constitutive models to be adopted. The objective of this study is to determine the role of layered meninges in damping the dynamic response of the brain under primary blast loadings. A composite structures composed of eight solid relevant layers (including the pia, cerebrospinal fluid (CSF), dura maters) with different mechanical properties are constructed to mimic the heterogeneous human head. A hyper-viscoelastic material model is developed to better represent …