Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

On The Use Of Machine Learning And Data-Transformation Methods To Predict Hydration Kinetics And Strength Of Alkali-Activated Mine Tailings-Based Binders, Sahil Surehali, Taihao Han, Jie Huang, Aditya Kumar, Narayanan Neithalath Mar 2024

On The Use Of Machine Learning And Data-Transformation Methods To Predict Hydration Kinetics And Strength Of Alkali-Activated Mine Tailings-Based Binders, Sahil Surehali, Taihao Han, Jie Huang, Aditya Kumar, Narayanan Neithalath

Electrical and Computer Engineering Faculty Research & Creative Works

The escalating production of mine tailings (MT), a byproduct of the mining industry, constitutes significant environmental and health hazards, thereby requiring a cost-effective and sustainable solution for its disposal or reuse. This study proposes the use of MT as the primary ingredient (≥70%mass) in binders for construction applications, thereby ensuring their efficient upcycling as well as drastic reduction of environmental impacts associated with the use of ordinary Portland cement (OPC). The early-age hydration kinetics and compressive strength of MT-based binders are evaluated with an emphasis on elucidating the influence of alkali activation parameters and the amount of slag or cement …


On The Prediction Of The Mechanical Properties Of Limestone Calcined Clay Cement: A Random Forest Approach Tailored To Cement Chemistry, Taihao Han, Bryan K. Aylas-Paredes, Jie Huang, Ashutosh Goel, Narayanan Neithalath, Aditya Kumar Oct 2023

On The Prediction Of The Mechanical Properties Of Limestone Calcined Clay Cement: A Random Forest Approach Tailored To Cement Chemistry, Taihao Han, Bryan K. Aylas-Paredes, Jie Huang, Ashutosh Goel, Narayanan Neithalath, Aditya Kumar

Materials Science and Engineering Faculty Research & Creative Works

Limestone calcined clay cement (LC3) is a sustainable alternative to ordinary Portland cement, capable of reducing the binder's carbon footprint by 40% while satisfying all key performance metrics. The inherent compositional heterogeneity in select components of LC3, combined with their convoluted chemical interactions, poses challenges to conventional analytical models when predicting mechanical properties. Although some studies have employed machine learning (ML) to predict the mechanical properties of LC3, many have overlooked the pivotal role of feature selection. Proper feature selection not only refines and simplifies the structure of ML models but also enhances these models' prediction performance and interpretability. This …


Experimental And Machine Learning Studies On Chitosan-Polyacrylamide Copolymers For Selective Separation Of Metal Sulfides In The Froth Flotation Process, Keitumetse Monyake, Taihao Han, Danish Ali, Lana Z. Alagha, Aditya Kumar Jun 2023

Experimental And Machine Learning Studies On Chitosan-Polyacrylamide Copolymers For Selective Separation Of Metal Sulfides In The Froth Flotation Process, Keitumetse Monyake, Taihao Han, Danish Ali, Lana Z. Alagha, Aditya Kumar

Mining Engineering Faculty Research & Creative Works

The froth flotation process is extensively used for the selective separation of valuable base metal sulfides from uneconomic associated minerals. However, in this complex multiphase process, various parameters need to be optimized to ensure separation selectivity and peak performance. In this study, two machine learning (ML) models, artificial neural network (ANN) and random forests (RF), were used to predict the efficiency of in-house synthesized chitosan-polyacrylamide copolymers (C-PAMs) in the depression of iron sulfide minerals (i.e., pyrite) while valuable base metal sulfides (i.e., galena and chalcopyrite) were floated using nine flotation variables as inputs to the models. The prediction performance of …


A Fiber-Optic Sensor-Embedded And Machine Learning Assisted Smart Helmet For Multi-Variable Blunt Force Impact Sensing In Real Time, Yiyang Zhuang, Taihao Han, Qingbo Yang, Ryan O'Malley, Aditya Kumar, Rex E. Gerald, Jie Huang Dec 2022

A Fiber-Optic Sensor-Embedded And Machine Learning Assisted Smart Helmet For Multi-Variable Blunt Force Impact Sensing In Real Time, Yiyang Zhuang, Taihao Han, Qingbo Yang, Ryan O'Malley, Aditya Kumar, Rex E. Gerald, Jie Huang

Materials Science and Engineering Faculty Research & Creative Works

Early on-site diagnosis of mild traumatic brain injury (mTBI) will provide the best guidance for clinical practice. However, existing methods and sensors cannot provide sufficiently detailed physical information related to the blunt force impact. In the present work, a smart helmet with a single embedded fiber Bragg grating (FBG) sensor is developed, which can monitor complex blunt force impact events in real time under both wired and wireless modes. The transient oscillatory signal "fingerprint" can specifically reflect the impact-caused physical deformation of the local helmet structure. By combination with machine learning algorithms, the unknown transient impact can be recognized quickly …


Additive Manufacturing Of Complexly Shaped Sic With High Density Via Extrusion-Based Technique – Effects Of Slurry Thixotropic Behavior And 3d Printing Parameters, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Tian Huang, Wenbao Jia, Ming-Chuan Leu, Haiming Wen Oct 2022

Additive Manufacturing Of Complexly Shaped Sic With High Density Via Extrusion-Based Technique – Effects Of Slurry Thixotropic Behavior And 3d Printing Parameters, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Tian Huang, Wenbao Jia, Ming-Chuan Leu, Haiming Wen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Additive manufacturing of dense SiC parts was achieved via an extrusion-based process followed by electrical-field assisted pressure-less sintering. The aim of this research was to study the effect of the rheological behavior of SiC slurry on the printing process and quality, as well as the influence of 3D printing parameters on the dimensions of the extruded filament, which are directly related to the printing precision and quality. Different solid contents and dispersant- Darvan 821A concentrations were studied to optimize the viscosity, thixotropy and sedimentation rate of the slurry. The optimal slurry was composed of 77.5 wt% SiC, Y2O3 and Al2O3 …


Predicting Compressive Strength Of Alkali-Activated Systems Based On The Network Topology And Phase Assemblages Using Tree-Structure Computing Algorithms, Rohan Bhat, Taihao Han, Sai Akshay Ponduru, Arianit Reka, Jie Huang, Gaurav Sant, Aditya Kumar Jun 2022

Predicting Compressive Strength Of Alkali-Activated Systems Based On The Network Topology And Phase Assemblages Using Tree-Structure Computing Algorithms, Rohan Bhat, Taihao Han, Sai Akshay Ponduru, Arianit Reka, Jie Huang, Gaurav Sant, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

Alkali-activated system is an environment-friendly, sustainable construction material utilized to replace ordinary Portland cement (OPC) that contributes to 9% of the global carbon footprint. Moreover, the alkali-activated system has exhibited superior strength at early ages and better corrosion resistance compared to OPC. The current state of analytical and machine learning models cannot produce highly reliable predictions of the compressive strength of alkali-activated systems made from different types of aluminosilicate-rich precursors owing to substantive variation in the chemical compositions and reactivity of these precursors. In this study, a random forest model with two constraints (i.e., topological network and thermodynamic constraints) is …