Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Ego-Localization Navigation For Intelligent Vehicles Using 360° Lidar Sensor For Point Cloud Mapping, Tyler Naes Jan 2017

Ego-Localization Navigation For Intelligent Vehicles Using 360° Lidar Sensor For Point Cloud Mapping, Tyler Naes

Electronic Theses and Dissertations

With its prospects of reducing vehicular accidents and traffic in highly populated urban areas by taking the human error out of driving, the future in automobiles is leaning towards autonomous navigation using intelligent vehicles. Autonomous navigation via Light Detection And Ranging (LIDAR) provides very accurate localization within a predefined, a priori, point cloud environment that is not possible with Global Positioning System (GPS) and video camera technology. Vehicles may be able to follow paths in the point cloud environment if the baseline paths it must follow are known in that environment by referencing objects detected in the point cloud …


Development Of An Automated Method For Identification Of Wet And Dry Channel Segments Using Lidar Data And Fuzzy Logic Cluster Analysis, Chris Rowney Jan 2015

Development Of An Automated Method For Identification Of Wet And Dry Channel Segments Using Lidar Data And Fuzzy Logic Cluster Analysis, Chris Rowney

Electronic Theses and Dissertations

Research into the use of LiDAR data for purposes other than simple topographic elevation determination, such as urban land cover classification and the identification of forest biomass, has become prominent in recent years. In many cases, alternative analysis methodologies conducted using airborne LiDAR data are possible because the raw data collected during a survey can include information other than the classically used elevation and coordinate points, the X, Y, and Z of the plane. In particular, intensity return values for each point in a LiDAR grid have been found to provide a useful data set for wet and dry channel …


Influence Of Topographic Elevation Error On Modeled Storm Surge, Matthew Bilskie Jan 2012

Influence Of Topographic Elevation Error On Modeled Storm Surge, Matthew Bilskie

Electronic Theses and Dissertations

The following presents a method for determining topographic elevation error for overland unstructured finite element meshes derived from bare earth LiDAR for use in a shallow water equations model. This thesis investigates the development of an optimal interpolation method to produce minimal error for a given element size. In hydrodynamic studies, it is vital to represent the floodplain as accurately as possible since terrain is a critical factor that influences water flow. An essential step in the development of a coastal inundation model is processing and resampling dense bare earth LiDAR to a DEM and ultimately to the mesh nodes; …


Incorporating Remotely Sensed Data Into Coastal Hydrodynamic Models: Parameterization Of Surface Roughness And Spatio-Temporal Validation Of Inundation Area, Stephen Conroy Medeiros Jan 2012

Incorporating Remotely Sensed Data Into Coastal Hydrodynamic Models: Parameterization Of Surface Roughness And Spatio-Temporal Validation Of Inundation Area, Stephen Conroy Medeiros

Electronic Theses and Dissertations

This dissertation investigates the use of remotely sensed data in coastal tide and inundation models, specifically how these data could be more effectively integrated into model construction and performance assessment techniques. It includes a review of numerical wetting and drying algorithms, a method for constructing a seamless digital terrain model including the handling of tidal datums, an investigation into the accuracy of land use / land cover (LULC) based surface roughness parameterization schemes, an application of a cutting edge remotely sensed inundation detection method to assess the performance of a tidal model, and a preliminary investigation into using 3-dimensional airborne …


A Laser Radar Employing Linearly Chirped Pulses From A Mode-Locked Laser For Long Range, Unambiguous, Sub-Millimeter Resolution Ranging And Velocimetry, Mohammad Umar Piracha Jan 2012

A Laser Radar Employing Linearly Chirped Pulses From A Mode-Locked Laser For Long Range, Unambiguous, Sub-Millimeter Resolution Ranging And Velocimetry, Mohammad Umar Piracha

Electronic Theses and Dissertations

Light detection and ranging (lidar) is used for various applications such as remote sensing, altimetry and imaging. In this talk, a linearly chirped pulse source is introduced that generates wavelength-swept pulses exhibiting ~6 nm optical bandwidth with > 20 km coherence length. The chirped pulses are used in an interferometric lidar setup to perform distance measurements with sub-millimeter resolution (using pulses that are a few meters long), at target distances > 10 km, with at least 25 dB signal-to-noise ratio at the receiver. A pulse repetition rate of 20 MHz provides fast update rates, while chirped pulse amplification allows easy amplification of …