Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Heat transfer

Mechanical Engineering

Series

Articles 1 - 29 of 29

Full-Text Articles in Engineering

Thermal Atomization On Superhydrophobic Surfaces Of Varying Temperature Jump Length, Eric D. Lee, Daniel Maynes, Julie Crockett, Brian D. Iverson Dec 2023

Thermal Atomization On Superhydrophobic Surfaces Of Varying Temperature Jump Length, Eric D. Lee, Daniel Maynes, Julie Crockett, Brian D. Iverson

Faculty Publications

This paper presents an experimental study of drop impingement and thermal atomization on hydrophobic and superhydrophobic (SH) surfaces. Superhydrophobic surfaces having both microscale and nanoscale geometry are considered. Microscale SH surfaces are coated with a hydrophobic coating and exhibit micropillars and cavities which are classified using the surface solid fraction and center to center pitch. The solid fraction and pitch values explored in this study range from 0.05-1.0 and 8-60 μm respectively. Nanoscale textured surfaces are created by applying a blanket layer of carbon nanotubes. Both types of surfaces are further classified by a temperature jump length (λ …


Advances In Spacecraft Thermal Control, Sandra K. S. Boetcher, Robert C. Consolo Jr. Jun 2023

Advances In Spacecraft Thermal Control, Sandra K. S. Boetcher, Robert C. Consolo Jr.

Publications

Spacecraft thermal management is critical for ensuring mission success, as it affects the performance and longevity of onboard systems. A comprehensive overview of the state of the art in spacecraft thermal control solutions, as well as a design methodology framework for efficient and effective thermal management, is provided. Various thermal control solutions, including coatings, insulation, heat pipes, phase-change materials, conductive materials, thermal devices, actively pumped fluid loops, and radiators, are discussed along with the primary sources of heat loading in space. The need for accurate modeling and analysis of the thermal environment to identify appropriate thermal control solutions and design …


Direct Spectroscopic Observation Of Cross-Plane Heat Transfer In A Two-Dimensional Van Der Waals Heterostructure, Du Chen, Matthieu Fortin-Deschênes, Yuchen Lou, Huiju Lee, Kenji Watanabe, Takaaki Taniguchi, Fengnian Xia, Peijun Guo, Multiple Additional Authors May 2023

Direct Spectroscopic Observation Of Cross-Plane Heat Transfer In A Two-Dimensional Van Der Waals Heterostructure, Du Chen, Matthieu Fortin-Deschênes, Yuchen Lou, Huiju Lee, Kenji Watanabe, Takaaki Taniguchi, Fengnian Xia, Peijun Guo, Multiple Additional Authors

Mechanical and Materials Engineering Faculty Publications and Presentations

Two-dimensional (2D) transition metal chalcogenides (TMDs) have drawn significant attention in recent years due to their extraordinary optical and electronic properties. As heat transfer plays an important role in device performance, various methods such as optothermal Raman spectroscopy and time-domain thermoreflectance have been developed to measure the thermal conductivity and interfacial thermal conductance in 2D van der Waals (vdW) heterostructures. Here, we employ the vibrational-pump-visible-probe (VPVP) spectroscopy to directly visualize the heat transfer process in a heterostructure of multilayer h-BN and monolayer WS2. Following an impulsive vibrational excitation of h-BN in the mid-infrared, we probe the heat transfer …


Comprehensive Review Of Heat Transfer Correlations Of Supercritical Co2 In Straight Tubes Near The Critical Point: A Historical Perspective, Nicholas C. Lopes, Yang Chao, Vinusha Dasarla, Neil P. Sullivan, Mark Ricklick, Sandra Boetcher Aug 2022

Comprehensive Review Of Heat Transfer Correlations Of Supercritical Co2 In Straight Tubes Near The Critical Point: A Historical Perspective, Nicholas C. Lopes, Yang Chao, Vinusha Dasarla, Neil P. Sullivan, Mark Ricklick, Sandra Boetcher

Publications

An exhaustive review was undertaken to assemble all available correlations for supercritical CO2 in straight, round tubes of any orientation with special attention paid to how the wildly varying fluid properties near the critical point are handled. The assemblage of correlations, and subsequent discussion, is presented from a historical perspective, starting from pioneering work on the topic in the 1950s to the modern day. Despite the growing sophistication of sCO2 heat transfer correlations, modern correlations are still only generally applicable over a relatively small range of operating conditions, and there has not been a substantial increase in predictive capabilities. Recently, …


Thermo-Fluidic Transport Process In A Novel M-Shaped Cavity Packed With Non-Darcian Porous Medium And Hybrid Nanofluid: Application Of Artificial Neural Network (Ann), Dipak Kumar Mandal, Nirmalendu Biswas, Nirmal K. Manna, Dilip Kumar Gayen, Rama S. R. Gorla, Ali J. Chamkha Mar 2022

Thermo-Fluidic Transport Process In A Novel M-Shaped Cavity Packed With Non-Darcian Porous Medium And Hybrid Nanofluid: Application Of Artificial Neural Network (Ann), Dipak Kumar Mandal, Nirmalendu Biswas, Nirmal K. Manna, Dilip Kumar Gayen, Rama S. R. Gorla, Ali J. Chamkha

Faculty Publications

In this work, an attempt has been made to explore numerically the thermo-fluidic transport process in a novel M-shaped enclosure filled with permeable material along with Al2O3-Cu hybrid nanoparticles suspended in water under the influence of a horizontal magnetizing field. To exercise the influence of geometric parameters, a classical trapezoidal cavity is modified with an inverted triangle at the top to construct an M-shaped cavity. The cavity is heated isothermally from the bottom and cooled from the top, whereas the inclined sidewalls are insulated. The role of geometric parameters on the thermal performance is scrutinized thoroughly …


Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian Jan 2022

Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

In lieu of an abstract, this is an excerpt from the first page.

Microfluidics has seen a remarkable growth over the past few decades, with its extensive applications in engineering, medicine, biology, chemistry, etc [...]


Experimental Study Of Wall Bounded Harbor Seal Whisker Inspired Pin Geometries, Anish Prasad, Mark Ricklick Jan 2022

Experimental Study Of Wall Bounded Harbor Seal Whisker Inspired Pin Geometries, Anish Prasad, Mark Ricklick

Publications

Conventional cylindrical/elliptical pins are one of the most widely used geometries in convection cooling systems and are used in the internal cooling of gas turbine blades and other applications, as they promote better heat transfer at the expense of large pressure losses and unsteadiness in the flow. The need to reduce pressure drop and maintain the heat transfer rates are a pressing requirement for a variety of industries to improve their cooling efficiency. One such prominent field of research is conducted in optimizing the design of pin geometries. In this study, a harbor seal whisker inspired geometry is being studied …


Experimental Heat Transfer Investigations Of A Double Pipe U-Tube Heat Exchanger Equipped With Twisted Tape And Cut Twisted Tape Internals, Raj Kumar Nayak Maloth, Glen Cletus Dsouza, Swarna Mayee Patra Nov 2021

Experimental Heat Transfer Investigations Of A Double Pipe U-Tube Heat Exchanger Equipped With Twisted Tape And Cut Twisted Tape Internals, Raj Kumar Nayak Maloth, Glen Cletus Dsouza, Swarna Mayee Patra

Mechanical and Materials Engineering Publications

For several decades, the use of heat exchangers for both heating and cooling applications has been established in industries ranging from process to space heating. Out of the various types of heat exchangers, U-tube heat exchangers are preferred owing to their abilities to handle larger flowrates and their simplicity in construction. U-tube exchangers are often equipped with innards of various forms which facilitate higher heat transfer rates and thermal efficiencies. Although higher heat transfer rates have been established with the addition of internals, there is a lack of coherence on the underlying complex physical phenomena such as heat transfer boundary …


Edalatpour Receives Nsf Career Award To Study Thermal Radiation In Quantum Materials And Quantum-Sized Distances, Marcus Wolf Mar 2021

Edalatpour Receives Nsf Career Award To Study Thermal Radiation In Quantum Materials And Quantum-Sized Distances, Marcus Wolf

General University of Maine Publications

Components the size of a few atoms, known as quantum materials, can enhance how technology functions and manages its heat. However, little is known about how heat is emitted and exchanged in quantum materials in contrast with their more common counterparts, three-dimensional bulk materials. Sheila Edalatpour, an assistant professor of mechanical engineering at the University of Maine, is studying how the emission of heat changes when the materials involved are quantum-sized, or when they are separated by a gap of the same size as one or multiple atoms.


Open Source Software Problems In Heat Transfer To Explore Assumptions And Models, Benjamin Pepper, Amir Behbahanian, Nick Roberts Jan 2021

Open Source Software Problems In Heat Transfer To Explore Assumptions And Models, Benjamin Pepper, Amir Behbahanian, Nick Roberts

Course Materials

Energy2D software can be downloaded here: http://energy.concord.org/energy2d/

After opening the application, choose File -> Open and select one of the .e2d files available for download here under additional files. Click the Run button to get started.

The main download has a document that provides a detailed description of the adaptation of a freely available software program, Energy2D, for problems focused on the exploration and limitations of assumptions made in models commonly used in an undergraduate heat transfer course. The motivation for creating homework problems that use Energy2D is to explore the accuracy and limitations of the models used in heat …


Hybrid Phase-Change Lattice Boltzmann Simulation Of Vapor Condensation On Vertical Subcooled Walls, Wandong Zhao, Yuan Gao, Ruijie Li, Songgang Qiu, Yin Zhang, Ben Xu Feb 2020

Hybrid Phase-Change Lattice Boltzmann Simulation Of Vapor Condensation On Vertical Subcooled Walls, Wandong Zhao, Yuan Gao, Ruijie Li, Songgang Qiu, Yin Zhang, Ben Xu

Mechanical Engineering Faculty Publications and Presentations

Saturated vapor condensation on homogenous and heterogeneous subcooled walls is presented in this study by adopting a hybrid phase-change multiple-relaxation-time Lattice Boltzmann model. The effects of wall wettability on the condensation process, including droplets’ growth, coalescence and falling, and the influence of vapor flow to condensation are investigated. The results demonstrate that the heat fluxes around the triple-phase contact lines are higher than that in other cold areas in homogeneous subcooled walls, which actually indicates the fact that filmwise condensation is preventing the continuous condensation process. Furthermore, the dropwise condensation can be formed more easily on the heterogeneous surface with …


Energy Conservation And Heat Transfer Enhancement For Mixed Convection On The Vertical Galvanizing Furnace, Dan Mei, Yuzheng Zhu, Xuemei Xu, Futang Xing Jan 2020

Energy Conservation And Heat Transfer Enhancement For Mixed Convection On The Vertical Galvanizing Furnace, Dan Mei, Yuzheng Zhu, Xuemei Xu, Futang Xing

Mechanical & Aerospace Engineering Faculty Publications

The alloying temperature is an important parameter that affects the properties of galvanized products. The objective of this study is to explore the mechanism of conjugate mixed convection in the vertical galvanizing furnace and propose a novel energy conservation method to improve the soaking zone temperature based on the flow pattern and heat transfer characteristics. Herein, the present study applied the k-ε two-equation turbulence model to enclose the Navier-Stokes fluid dynamic and energy conservation equations, and the temperature distributions of the steel plate and air-flow field in the furnace were obtained for six Richardson numbers between 1.91 ⋅ 105 …


Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong Aug 2019

Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong

Department of Chemistry: Dissertations, Theses, and Student Research

During the last 30 years, microelectronic devices have been continuously designed and developed with smaller size and yet more functionalities. Today, hundreds of millions of transistors and complementary metal-oxide-semiconductor cells can be designed and integrated on a single microchip through 3D packaging and chip stacking technology. A large amount of heat will be generated in a limited space during the operation of microchips. Moreover, there is a high possibility of hot spots due to non-uniform integrated circuit design patterns as some core parts of a microchip work harder than other memory parts. This issue becomes acute as stacked microchips get …


Using Thermal Gradient Measurements To Compare Bath Temperature And Agitation Effects On The Quenching Performance Of Palm Oil, Canola Oil And A Conventional Petroleum Oil, Bozidar Matijevic, Bruno F. Canale, Božidar Lišcic, George Totten May 2019

Using Thermal Gradient Measurements To Compare Bath Temperature And Agitation Effects On The Quenching Performance Of Palm Oil, Canola Oil And A Conventional Petroleum Oil, Bozidar Matijevic, Bruno F. Canale, Božidar Lišcic, George Totten

Mechanical and Materials Engineering Faculty Publications and Presentations

A proprietary Liscic/Petrofer cylindrical Inconel 600 probe of 50-mm diameter and 200-mm length which was instrumented with three thermocouples on the same radius of the crosssection at the middle of the length was used to determine the differences in quenching performance of two vegetable oils, palm oil and canola oil, and they were compared to a locally produced conventional petroleum oil quenchant. The cooling curves and heat transfer performance of these oils were determined at different bath temperatures and agitation rates. The work was performed at the Quenching Research Centre located at the Faculty for Mechanical Engineering, University of Zagreb, …


Influence Of Micro-Structured Superhydrophobic Surfaces On Nucleation And Natural Convection In A Heated Pool, Adam Cowley, Daniel Maynes, Julie Crockett, Brian D. Iverson Feb 2019

Influence Of Micro-Structured Superhydrophobic Surfaces On Nucleation And Natural Convection In A Heated Pool, Adam Cowley, Daniel Maynes, Julie Crockett, Brian D. Iverson

Faculty Publications

This word experimentally explores sub-boiling pool nucleation on micro-structured superhydrophobic surfaces. All surfaces tested were submerged in a 20 mm deep pool of water and heated from below to maintain a constant surface temperature, while the side walls of the pool were insulated, and the top was covered. Three thermocouples positioned in the pool obtain the average pool temperature. A heat flux sensor is placed directly beneath the surface to measure the heat flux supplied to the pool. Free convection heat transfer coefficients are obtained for the sub-boiling temperature range of 40 – 90 ºC. Six surface types are studied: …


Parallelized Particle Swarm Optimization To Estimate The Heat Transfer Coefficients Of Palm Oil, Canola Oil, Conventional, And Accelerated Petroleum Oil Quenchants, Zoltán Fried, Imre Felde, Rosa L. Simencio Otero, Jônatas M. Viscaino, George E. Totten, Lauralice Canale Feb 2019

Parallelized Particle Swarm Optimization To Estimate The Heat Transfer Coefficients Of Palm Oil, Canola Oil, Conventional, And Accelerated Petroleum Oil Quenchants, Zoltán Fried, Imre Felde, Rosa L. Simencio Otero, Jônatas M. Viscaino, George E. Totten, Lauralice Canale

Mechanical and Materials Engineering Faculty Publications and Presentations

An inverse solver for the estimation of the temporal-spatial heat transfer coefficients (HTC), without using prior information of the thermal boundary conditions, was used for immersion quenching into palm oil, canola oil, and two commercial petroleum oil quenchants. The particle swarm optimization (PSO) method was used on near-surface temperature-time cooling curve data obtained with the so-called Tensi multithermocouple, and a 12.5 by 45 mm Inconel 600 probe. The fitness function to be minimized by a PSO approach is defined by the deviation of the measured and calculated cooling curves. The PSO algorithm was parallelized and implemented on a graphics accelerator …


Numerical Study On The Dynamic Process Of Single Plume Flow In Thermal Convection With Polymers, Jian-Ping Cheng, Wei-Hua Cai, Hong-Na Zhang, Feng-Chen Li, Lian Shen, Shi-Zhi Qian Jan 2019

Numerical Study On The Dynamic Process Of Single Plume Flow In Thermal Convection With Polymers, Jian-Ping Cheng, Wei-Hua Cai, Hong-Na Zhang, Feng-Chen Li, Lian Shen, Shi-Zhi Qian

Mechanical & Aerospace Engineering Faculty Publications

A direct numerical simulation of single plume flow in thermal convection with polymers was carried out in a domain with 1:3 as the width to height ratio. The heat transport ability is weakened by adding polymers within the here-investigated governing parameter range. However, it is promoted when the maximum polymer extension L is increased. The distribution of vertical velocity and temperature indicates that the plume in the polymer solution case is speeded up and widens bigger as compared to that in the Newtonian fluid case. Inside the plume, polymer chains tend to release energy at the position where the …


Bubble Nucleation In Superhydrophobic Microchannels Due To Subcritical Heating, Adam Cowley, Daniel Maynes, Julie Crockett, Brian D. Iverson Jun 2018

Bubble Nucleation In Superhydrophobic Microchannels Due To Subcritical Heating, Adam Cowley, Daniel Maynes, Julie Crockett, Brian D. Iverson

Faculty Publications

This work experimentally studies the effects of single wall heating on laminar flow in a high-aspect ratio superhydrophobic microchannel. When water that is saturated with air is used as the working liquid, the non-wetted cavities on the superhydrophobic surfaces act as nucleation sites and allow air to effervesce out of the water and onto the surface when heated. Previous works in the literature have only considered the opposite case where the water is undersaturated and absorbs air out the cavities for a microchannel setting. The microchannel considered in this work consists of a rib/cavity structured superhydrophobic surface and a glass …


Numerical Simulation Of Heat Transfer And Chemistry In The Wake Behind A Hypersonic Slender Body At Angle Of Attack, Matthew J. Satchell, Jeffrey M. Layng, Robert B. Greendyke Mar 2018

Numerical Simulation Of Heat Transfer And Chemistry In The Wake Behind A Hypersonic Slender Body At Angle Of Attack, Matthew J. Satchell, Jeffrey M. Layng, Robert B. Greendyke

Faculty Publications

The effect of thermal and chemical boundary conditions on the structure and chemical composition of the wake behind a 3D Mach 7 sphere-cone at an angle of attack of 5 degrees and an altitude of roughly 30,000 m is explored. A special emphasis is placed on determining the number density of chemical species which might lead to detection via the electromagnetic spectrum. The use of non-ablating cold-wall, adiabatic, and radiative equilibrium wall boundary conditions are used to simulate extremes in potential thermal protection system designs. Non-ablating, as well as an ablating boundary condition using the “steady-state ablation” assumption to compute …


Design And Validation Of An Experimental Setup To Study Single Phase Heat Transfer Enhancement Of Femtosecond Laser Processed Metallic Surfaces, Sarah Jane Wallis Dec 2017

Design And Validation Of An Experimental Setup To Study Single Phase Heat Transfer Enhancement Of Femtosecond Laser Processed Metallic Surfaces, Sarah Jane Wallis

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

In the present work, a single phase flow heat transfer experimental loop was designed with the intention of studying the effects of femtosecond laser surface processing (FLSP) on metallic surfaces with the specific goal of enhancing heat transfer in compact heat exchangers currently in use by NASA. This experimental setup went through two major design iterations which are detailed in this thesis. The first iteration consisted of a counterflow fluid-to-fluid heat exchanger, which measured overall heat transfer coefficients and pressure drops, where the overall heat transfer coefficient is defined in terms of the total thermal resistance to heat transfer between …


Construction Of Metallic Glass Structures By Laser-Foil-Printing Technology, Yiyu Shen, Yingqi Li, Hai-Lung Tsai Aug 2017

Construction Of Metallic Glass Structures By Laser-Foil-Printing Technology, Yiyu Shen, Yingqi Li, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Metallic glasses (MGs) have superior mechanical properties such as high tensile strength, hardness, and corrosion resistance, as compared to crystalline metals. Although newly developed MGs have significantly reduced critical cooling rates down to 10 K/s, products of MGs are still limited to simple geometries such as foils/plates or rods with thin section-thickness which is mainly caused by the decrease of thermal conductivities of the new MGs. Recently, we developed a new Laser-foil-printing (LFP) additive manufacturing technology which welds foils, layer by layer, to construct desired 3D structures. With the LFP and Zr-based amorphous foils, 3D, large amorphous structures with complex …


Hysteresis Heating Of Railroad Bearing Thermoplastic Elastomer Suspension Element, Oscar O. Rodriguez, Arturo A. Fuentes, Constantine Tarawneh, Robert E. Jones Jun 2017

Hysteresis Heating Of Railroad Bearing Thermoplastic Elastomer Suspension Element, Oscar O. Rodriguez, Arturo A. Fuentes, Constantine Tarawneh, Robert E. Jones

Mechanical Engineering Faculty Publications and Presentations

Thermoplastic elastomers (TPE’s) are increasingly being used in rail service in load damping applications. They are superior to traditional elastomers primarily in their ease of fabrication. Like traditional elastomers they offer benefits including reduction in noise emissions and improved wear resistance in metal components that are in contact with such parts in the railcar suspension system. However, viscoelastic materials, such as the railroad bearing thermoplastic elastomer suspension element (or elastomeric pad), are known to develop self-heating (hysteresis) under cyclic loading, which can lead to undesirable consequences. Quantifying the hysteresis heating of the pad during operation is therefore essential to predict …


Dynamic Control Of Radiative Surface Properties With Origami-Inspired Design, Rydge B. Mulford, Matthew R. Jones, Brian D. Iverson Mar 2016

Dynamic Control Of Radiative Surface Properties With Origami-Inspired Design, Rydge B. Mulford, Matthew R. Jones, Brian D. Iverson

Faculty Publications

Thermal management systems for space equipment commonly use static solutions that do not adapt to environmental changes. Dynamic control of radiative surface properties is one way to respond to environmental changes and to increase the capabilities of spacecraft thermal management systems. This paper documents an investigation of the extent to which origami-inspired surfaces may be used to control the apparent absorptivity of a reflective material. Models relating the apparent absorptivity of a radiation shield to time-dependent surface temperatures are presented. Results show that the apparent absorptivity increases with increasing fold density and indicate that origami-inspired designs may be used to …


Simulation And Validation Of Radio Frequency Heating Of Shell Eggs, Soon Kiat Lau Jul 2015

Simulation And Validation Of Radio Frequency Heating Of Shell Eggs, Soon Kiat Lau

Department of Food Science and Technology: Dissertations, Theses, and Student Research

Finite element models were developed with the purpose of finding an optimal radio frequency (RF) heating setup for pasteurizing shell eggs. Material properties of the yolk, albumen, and shell were measured and fitted into equations that were used as inputs for the model. When the egg was heated by itself, heating tend to be focused at the air cell to result in a “coagulation ring.” The focused heating near the air cell of the egg prevented satisfactory pasteurization of the egg, but deeper analysis of the simulation results offered a new perspective on how non-uniform RF heating could occur in …


High Regression Rate Hybrid Rocket Fuel Grains With Helical Port Structures, Stephen A. Whitmore, Sean D. Walker, Daniel P. Merkley, Mansour Sobbi Jan 2015

High Regression Rate Hybrid Rocket Fuel Grains With Helical Port Structures, Stephen A. Whitmore, Sean D. Walker, Daniel P. Merkley, Mansour Sobbi

Mechanical and Aerospace Engineering Faculty Publications

Results froma development campaign, where modern additive manufacturing methods are used to fabricate hybrid rocket fuel grains with embedded helical ports, are presented. The fuel grains were constructed from acrlyonitrile butadiene styrene using commercially available three-dimensional printer feedstockmaterial.Gaseous oxygen is used as the oxidizer for this test campaign.When compared to cylindrical fuel ports, significant increases in fuel regression rates were observed, and these increases in regression rate diminished with time as the helical fuel port burns to become progressivelymore cylindrical. Comparisons to the helical pipe flow skin friction correlation developed by Mishra and Gupta indicate that increased skin friction only …


Solution Of Nonlinear Transient Heat Transfer Problems, Donovan O. Buckley Nov 2010

Solution Of Nonlinear Transient Heat Transfer Problems, Donovan O. Buckley

FIU Electronic Theses and Dissertations

In the presented thesis work, meshfree method with distance fields was extended to obtain solution of nonlinear transient heat transfer problems. The thesis work involved development and implementation of numerical algorithms, data structure, and software. Numerical and computational properties of the meshfree method with distance fields were investigated. Convergence and accuracy of the methodology was validated by analytical solutions, and solutions produced by commercial FEM software (ANSYS 12.1). The research was focused on nonlinearities caused by temperature-dependent thermal conductivity. The behavior of the developed numerical algorithms was observed for both weak and strong temperature-dependency of thermal conductivity. Oseen and Newton-Kantorovich …


Steady-State Green’S Function Solution For Moving Media With Axial Conduction, A. Haji-Sheikh, J. V. Beck, Kevin D. Cole Jun 2010

Steady-State Green’S Function Solution For Moving Media With Axial Conduction, A. Haji-Sheikh, J. V. Beck, Kevin D. Cole

Department of Mechanical and Materials Engineering: Faculty Publications

The objective of this presentation is the development of a generalized steady-state Green’s function solution to study the temperature field in moving bodies. This type of solution permits the inclusion of different nonhomogeneous boundary conditions, volumetric heat sources, and possible position-dependent thermophysical properties. Although the mathematical formulation is for moving solids, it can be used to study the heat transfer in a moving fluid with a non-uniform velocity distribution passing through a micro-channel or fluid-saturated porous ducts. Additionally, this presentation includes the application of this Green’s function solution to acquire numerical information for selected examples to further illustrate the numerical …


Note: Thermal Analog To Atomic Force Microscopy Force-Displacement Measurements For Nanoscale Interfacial Contact Resistance, Brian D. Iverson, John E. Blendell, Suresh V. Garimella Mar 2010

Note: Thermal Analog To Atomic Force Microscopy Force-Displacement Measurements For Nanoscale Interfacial Contact Resistance, Brian D. Iverson, John E. Blendell, Suresh V. Garimella

Faculty Publications

Thermal diffusion measurements on polymethylmethacrylate-coated Si substrates using heated atomic force microscopy tips were performed to determine the contact resistance between an organic thin film and Si. The measurement methodology presented demonstrates how the thermal contrast signal obtained during a force-displacement ramp is used to quantify the resistance to heat transfer through an internal interface. The results also delineate the interrogation thickness beyond which thermal diffusion in the organic thin film is not affected appreciably by the underlying substrate.


Thermal Analog To Afm Force-Displacement Measurements For Nanoscale Interfacial Contact Resistance, Brian D. Iverson, John E. Blendell, Suresh V. Garimella Jan 2010

Thermal Analog To Afm Force-Displacement Measurements For Nanoscale Interfacial Contact Resistance, Brian D. Iverson, John E. Blendell, Suresh V. Garimella

Faculty Publications

Thermal diffusion measurements on PMMA-coated Si substrates using heated AFM tips were performed to determine the contact resistance between an organic thin film and Si. The measurement methodology presented demonstrates how the thermal contrast signal obtained during a force-displacement ramp is used to quantify the resistance to heat transfer through an internal interface. The results also delineate the interrogation thickness beyond which thermal diffusion in the organic thin film is not affected appreciably by the underlying substrate.