Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Nanomechanical And Morphological Characterization Of Tungsten Trioxide (Wo3) Thin Films Grown By Atomic Layer Deposition, M. A. Mamun, K. Zhang, H. Baumgart, A. A. Elmustafa Jan 2015

Nanomechanical And Morphological Characterization Of Tungsten Trioxide (Wo3) Thin Films Grown By Atomic Layer Deposition, M. A. Mamun, K. Zhang, H. Baumgart, A. A. Elmustafa

Mechanical & Aerospace Engineering Faculty Publications

This study investigates the nanomechanical properties and surface morphology of tungsten oxide WO3thin films deposited on p-type Si(100) substrates using atomic layer deposition (ALD) technology with 2000 ALD deposition cycles at a growth temperature of 300°C and annealed at different temperatures. The samples were further furnace annealed at 500, 600 and 700°C for 60 min. The influence of the deposition process on the structure and properties of the WO3 films is discussed, presented and correlated to the characteristic features of the ALD technique. The results depict significant difference in the hardness and modulus measurements between the as …


Treatment Technology Validation For Water Softening Technology, Caitlin Brown, Nathan Dillon, Kevin Tweeten, Peixi Yan, Kayla Lester, Tim Lewis Mar 2012

Treatment Technology Validation For Water Softening Technology, Caitlin Brown, Nathan Dillon, Kevin Tweeten, Peixi Yan, Kayla Lester, Tim Lewis

Senior Design

MT Hard Water of Montana Tech of the University of Montana submits Task 3: Treatment Technology Validation for Water Softening Technology as an entry into the 2012 WERC Environmental Design Contest.

Currently, there are several commercially available technologies that treat water hardness. The objective of this project is to develop a strategy to evaluate and validate different water hardness treatment technologies. MT Hard Water (MTHW) has studied several technologies including: electromagnetic water treatment, ion exchange, and reverse osmosis. For validation purposes, an electromagnetic water treatment system (ScaleRID) was selected according to the WERC task description.


High-Throughput Screening Of Shape Memory Alloy Thin-Film Spreads Using Nanoindentation, Arpit Dwivedi, Thomas J. Wyrobek, Oden L. Warren, Jason R. Hattrick-Simpers, Olubenga O. Famodu, Ichiro Takeuchi Jan 2008

High-Throughput Screening Of Shape Memory Alloy Thin-Film Spreads Using Nanoindentation, Arpit Dwivedi, Thomas J. Wyrobek, Oden L. Warren, Jason R. Hattrick-Simpers, Olubenga O. Famodu, Ichiro Takeuchi

Faculty Publications

We have demonstrated the utility of nanoindentation as a rapid characterization tool for mapping shape memoryalloy compositions in combinatorial thin-film libraries. Nanoindentation was performed on Ni–Mn–Al ternary composition spreads. The indentation hardness and the reduced elastic modulus were mapped across a large fraction of the ternary phase diagram. The large shape memoryalloy composition region, located around the Heusler composition (Ni2MnAl), was found to display significant departure in these mechanical properties from the rest of the composition spread. In particular, the modulus and the hardness values are lower for the martensite region than those of the rest of the …


Nanoindentation Of The A And C Domains In A Tetragonal Batio3 Single Crystal, Young-Bae Park, Matthew J. Dicken, Zhi-Hui Xu, Xiaodong Li Oct 2007

Nanoindentation Of The A And C Domains In A Tetragonal Batio3 Single Crystal, Young-Bae Park, Matthew J. Dicken, Zhi-Hui Xu, Xiaodong Li

Faculty Publications

Nanoindentation in conjunction with piezoresponse force microscopy was used to study domain switching and to measure the mechanical properties of individual ferroelectric domains in a tetragonal BaTiO3 single crystal. It was found that nanoindentation has induced local domain switching; the a and c domains of BaTiO3 have different elastic moduli but similar hardness.Nanoindentationmodulus mapping on the a and c domains further confirmed such difference in elasticity. Finite element modeling was used to simulate the von Mises stress and plastic strain profiles of the indentations on both a and c domains, which introduces a much higher stress level than …