Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Hardness

Faculty of Engineering University of Malaya

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Alternative Methods To Determine The Elastoplastic Properties Of Sintered Hydroxyapatite From Nanoindentation Testing Feb 2015

Alternative Methods To Determine The Elastoplastic Properties Of Sintered Hydroxyapatite From Nanoindentation Testing

Faculty of Engineering University of Malaya

This study introduces alternative methods to determine the elastoplastic properties of bovine-derived Hydroxyapatite (HA) porous bone graft through a set of nanoindentation tests with a Berkovich indenter. Generally, experimental data obtained from nanoindentation tests are force displacement, hardness and elastic modulus. However, to determine plastic properties such as strength coefficient and work hardening exponent of bovine HA, analytical or inverse finite element models are required. In this paper, the effect of sintering temperature on these properties of HA is studied for the range of 1000-1400 degrees C. The direct and inverse Finite Element (FE) simulation models for nanoindentation tests were …


Investigating The Surface Tribology Of Roller-Burnished Polymer Using The Fuzzy Rule-Based Approach Jan 2015

Investigating The Surface Tribology Of Roller-Burnished Polymer Using The Fuzzy Rule-Based Approach

Faculty of Engineering University of Malaya

Burnishing is specified as the plastic deformation cold working process applied as surface treatment and smoothing following machining to obtain a superior surface roughness finish. The present experimental study was carried out on roller-burnished polyurethane using a roller burnishing tool. An analysis was done to investigate the effect of burnishing depth, speed, feed rate, and roller width on the surface roughness of the polymer workpiece. Roughness (R-a) prediction was achieved with a fuzzy rule-based system. The results indicate 95% accuracy between the fuzzy predicted roughness values and experimental results. Link to Full-Text Articles : www.tandfonline.com/doi/abs/10.1080/10402004.2014.962205