Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Graphene

Electrical and Computer Engineering

Missouri University of Science and Technology

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Graphene Based Tunable Terahertz Holographic Antennas, Pengfei Ren, Lijun Jiang, Ping Li Jan 2022

Graphene Based Tunable Terahertz Holographic Antennas, Pengfei Ren, Lijun Jiang, Ping Li

Electrical and Computer Engineering Faculty Research & Creative Works

In this work, several representative terahertz (THz) graphene holographic impedance surface antenna are presented. Different to the conventional impedance surface antenna that manipulates the surface impedance via varying the patch size in each unit cell, the surface impedance of the proposed antenna in this paper is readily controlled by applying a tunable DC biasing to each graphene patch cell, the physics behind which is that the conductivity of the graphene is a function of imposed voltage. Thus, the graphene patches of the proposed antenna have same size as well as equal spacing, which makes the modeling process more convenient and …


Numerical Methods For Electromagnetic Modeling Of Graphene: A Review, Kaikun Niu, Ping Li, Zhixiang Huang, Li (Lijun) Jun Jiang, Hakan Bagci Jan 2020

Numerical Methods For Electromagnetic Modeling Of Graphene: A Review, Kaikun Niu, Ping Li, Zhixiang Huang, Li (Lijun) Jun Jiang, Hakan Bagci

Electrical and Computer Engineering Faculty Research & Creative Works

Graphene's remarkable electrical, mechanical, thermal, and chemical properties have made this the frontier of many other 2-D materials a focus of significant research interest in the last decade. Many theoretical studies of the physical mechanisms behind these properties have been followed by those investing the graphene's practical use in various fields of engineering. Electromagnetics, optics, and photonics are among these fields, where potential benefits of graphene in improving the device/system performance have been studied. These studies are often carried out using simulation tools. To this end, many numerical methods have been developed to characterize electromagnetic field/wave interactions on graphene sheets …


Graphene Based Functional Devices: A Short Review, Rong Wang, Xin Gang Ren, Ze Yan, Li (Lijun) Jun Jiang, Wei E.I. Sha, Guang Cun Shan Feb 2019

Graphene Based Functional Devices: A Short Review, Rong Wang, Xin Gang Ren, Ze Yan, Li (Lijun) Jun Jiang, Wei E.I. Sha, Guang Cun Shan

Electrical and Computer Engineering Faculty Research & Creative Works

Graphene is an ideal 2D material system bridging electronic and photonic devices. It also breaks the fundamental speed and size limits by electronics and photonics, respectively. Graphene offers multiple functions of signal transmission, emission, modulation, and detection in a broad band, high speed, compact size, and low loss. Here, we have a brief view of graphene based functional devices at microwave, terahertz, and optical frequencies. Their fundamental physics and computational models were discussed as well.


Analysis Of Nonlinear Graphene Plasmonics Using Surface Integral Equations, Ling Ling Meng, Tian Xia, Xiaoyan Y.Z. Xiong, Li (Lijun) Jun Jiang, Weng Cho Chew May 2018

Analysis Of Nonlinear Graphene Plasmonics Using Surface Integral Equations, Ling Ling Meng, Tian Xia, Xiaoyan Y.Z. Xiong, Li (Lijun) Jun Jiang, Weng Cho Chew

Electrical and Computer Engineering Faculty Research & Creative Works

Graphene plasmonics have attracted significant attention in the past few years due to the remarkable optical and electrical properties of graphene. A highly effective method based on surface integral equations (SIE) in the frequency domain is proposed to describe both linear and nonlinear effects of graphene efficiently and accurately. Graphene, a centrosymmet-ric material, can possess second harmonic generation (SHG) when the conductivity is nonlocal. In this work, the fundamental harmonic (FH) of a graphene wrapped particle is studied as the first benchmark by introducing a conducting surface in SIE. Then it is modified to analyze a graphene-based patch antenna in …


An Equivalent Circuit Model For Graphene-Based Terahertz Antenna Using The Peec Method, Ying S. Cao, Li (Lijun) Jun Jiang, Albert E. Ruehli Apr 2016

An Equivalent Circuit Model For Graphene-Based Terahertz Antenna Using The Peec Method, Ying S. Cao, Li (Lijun) Jun Jiang, Albert E. Ruehli

Electrical and Computer Engineering Faculty Research & Creative Works

The electromagnetic (EM) characterization of graphene under general EM environments is becoming of interest in the engineering and scientific research fields. However, its numerical modeling process is extremely cost prohibitive due to the huge contrast between its thickness and other dimensions. In this work, for the first time, the EM features of graphene are characterized by a circuit model through the partial element equivalent circuit (PEEC) method. The atomically thick graphene is equivalently replaced by an impedance boundary condition. After incorporating the PEEC method, a novel surface conductivity circuit model is derived for graphene. A physical resistor and inductor are …


Dgtd Analysis Of Electromagnetic Scattering From Penetrable Conductive Objects With Ibc, Ping Li, Yifei Shi, Li (Lijun) Jun Jiang, Hakan Bagci Dec 2015

Dgtd Analysis Of Electromagnetic Scattering From Penetrable Conductive Objects With Ibc, Ping Li, Yifei Shi, Li (Lijun) Jun Jiang, Hakan Bagci

Electrical and Computer Engineering Faculty Research & Creative Works

To avoid straightforward volumetric discretization, a discontinuous Galerkin time-domain (DGTD) method integrated with the impedance boundary condition (IBC) is presented in this paper to analyze the scattering from objects with finite conductivity. Two situations are considered. 1) The skin depth is smaller than the thickness of the conductive volume. 2) The skin depth is larger than the thickness of a thin conductive sheet. For the first situation, a surface impedance boundary condition (SIBC) is employed, wherein the surface impedance usually exhibits a complex relation with the frequency. To incorporate the SIBC into DGTD, the surface impedance is first approximated by …