Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Engineering

In The Pursuit Of Assistance: A Team's Desire To Not Let A Congenital Amputation Get In A Young Boy's Way, Carl Russell Iii, Gavin Loucks, Kirsten Wozniak Oct 2020

In The Pursuit Of Assistance: A Team's Desire To Not Let A Congenital Amputation Get In A Young Boy's Way, Carl Russell Iii, Gavin Loucks, Kirsten Wozniak

Purdue Journal of Service-Learning and International Engagement

EPICS is a service-learning design program run through Purdue University. It strives to teach students design skills through providing for individuals, communities, and organizations in the surrounding area while mirroring engineering industry standards. BME (Biomedical Engineering) is a team within EPICS that strives to serve community partners through biomedical applications. William Sevick is an elementary school student with a congenital arm amputation. William and his family have been working with the BME team for the past three years designing assistive devices with the purpose of improving his actions in daily life such as eating, playing games, and riding his bike.


Electromagnetic Actuator For Camless Engines, Nicholas Olesh, Charlie Thomas Glenwright, Tim Wills De Tone, Darya Daniel Darvish Jun 2020

Electromagnetic Actuator For Camless Engines, Nicholas Olesh, Charlie Thomas Glenwright, Tim Wills De Tone, Darya Daniel Darvish

Mechanical Engineering

This document summarizes the research, objectives, project plan, and design for developing an electromagnetic actuator valve for use in a camless internal combustion engine. While electromagnetic valve actuators have not been implemented into a working product to date, there have been many attempts to research and develop working prototypes. Similar products have been developed, but they do not use purely electromagnetic actuation. This research is significant because it shows the challenge that must be overcome and outlines potential design solutions to the problem. The objectives section highlights the problem statement and what is aimed to be achieved in this project. …


Heavenly Bodies Rsvp, Justin Tyler Spitzer, Allison Jean Turnbaugh, Jack William Boulware, Braden Alex Lockwood Jun 2020

Heavenly Bodies Rsvp, Justin Tyler Spitzer, Allison Jean Turnbaugh, Jack William Boulware, Braden Alex Lockwood

Mechanical Engineering

The purpose of the Heavenly Bodies RSVP project was to design and fabricate planet props, as well as a mechanism by which they could be raised and lowered in California Polytechnic State University’s Pavilion theater. The project team was comprised of four fourth year mechanical engineering students: Allison Turnbaugh, Braden Lockwood, Jack Boulware, and Justin Spitzer. We conducted extensive research to determine the ideal solution for the design problem brought to us by our sponsor. In our analysis, we discovered that the most important aspects of our design were the absolute reliability of the system, fire retardant material selection, and …


An Assessment Of Renewable Energy Technology Implementation In Storrs, Connecticut: Emissions Reduction And Feasibility Of A Microgrid System At Uconn, Sophie Macdonald May 2020

An Assessment Of Renewable Energy Technology Implementation In Storrs, Connecticut: Emissions Reduction And Feasibility Of A Microgrid System At Uconn, Sophie Macdonald

Honors Scholar Theses

The purpose of this project is to design a clean energy-sourced microgrid for UConn’s main campus that would reduce the university’s energy emissions while remaining within the geographic boundaries of viable UConn-owned land. Economic cost was not considered in this analysis; instead, emissions and space constraints were the optimized measures of value and feasibility. Sources of energy that were considered include photovoltaics (PV), wind turbines, hydrokinetic systems, and fuel cells. Energy storage capacity was included in the analysis as well. The overall system was optimized first by ignoring space constraints and for a minimum of 10% reduction from the current …


Fish Farming Aerator, Kylie Johnson, Therese Rosalez, Jordan Hendricker, Ryan Froidcoeur Apr 2020

Fish Farming Aerator, Kylie Johnson, Therese Rosalez, Jordan Hendricker, Ryan Froidcoeur

Scholar Week 2016 - present

Designing, building and installing a functional and efficient aerator prototype suitable for small pond intensive aquaculture use in El Faro, Guatemala. The project’s purpose is to provide a solution for farming tilapia. A successful project outcome will help impoverished families to raise tilapia for food and income The team will install the aeration system on-site in El Faro, Guatemala.


Nucor Steel Storage Rack Design, Mac Hanson, Hannah Cataldo, Jason Ziganto, Robert Wozek Apr 2020

Nucor Steel Storage Rack Design, Mac Hanson, Hannah Cataldo, Jason Ziganto, Robert Wozek

Scholar Week 2016 - present

The goal of this design project was to build effective steel storage racks for Nucor Steel Kankakee. The important criteria that the design team needed to meet was that the rack was adjustable, could fit all of the manufactured products that Nucor makes, and could fit various lengths of product. Nucor needs a new rack system because their current process makes the shipping process very inefficient.


Geometric Iteration Of A Knee Prosthetic And Static Stress-Bearing Capacity, Alexander Wheeler Mar 2020

Geometric Iteration Of A Knee Prosthetic And Static Stress-Bearing Capacity, Alexander Wheeler

Honors Theses

The purpose of this study was to improve a prosthetic knee model in terms of size, weight, and biocompatibility. Several tests were run to determine its effectiveness in supporting static and quasistatic loads. The positions in which these tests were run include static upright standing, static one-knee 90 degree kneeling, static squatting at maximum flexion, and quasistatic midstride. These simulations were conducted to find areas of high stress and strain. These patterns were used to determine the maximum body weight a physical prosthetic could support. The material used to create the prosthetic was changed from AISI 316 stainless steel to …


Jcati Composite Delaminator, Payden Coffman Jan 2020

Jcati Composite Delaminator, Payden Coffman

All Undergraduate Projects

Improvements need to be made to the existing delaminator system designed to crush proprietary Boeing 777 composite material. The current design incorporates a hydraulic system to achieve the high loads needed to separate material layers. The new system will need to be able to apply the same loads while at the same time allowing for a constant feed of material through the system. To achieve this, a “gear-like” crushing system will be implemented that will apply a high enough radial load into the material that will achieve delamination equal or greater than the previous design while at the same time …


Efficiency Of Gas Turbine Engines, Tahir A. Upshaw Jan 2020

Efficiency Of Gas Turbine Engines, Tahir A. Upshaw

The Kennesaw Journal of Undergraduate Research

The following research involves conducting a confirmation of test bench results, and parametric cycle analysis. The results from these two methods of data collection is meant to show relationship between both. Where the data of the price induction can be verified with the parametric cycle analysis of the individual components to calculate the thrust and efficiency. Once we compare both methods, it will allow us to move on to part two of the research which involves determining how to make gas turbine engines more efficient based on the collected data.


Ideal Lacrosse Stick, Josh Beck, Tyler Skoloda, Noah Reed, Stanley Dembosky Jan 2020

Ideal Lacrosse Stick, Josh Beck, Tyler Skoloda, Noah Reed, Stanley Dembosky

Williams Honors College, Honors Research Projects

This project is focused on the design of a new and innovative lacrosse stick. Our main points of focus will be the strength and durability of the head. As well as solving some of the problems that exist in existing equipment. These problems were identified by interviewing experienced players at the college level. Benefits would include a stronger head that is easier to use for a player on the field to do things like pass, catch, shoot, and field ground balls in an optimal manner. Normally players will have to purchase new heads every season as a result of warping …


Tabletop Mechanical Tester, Jamie Dombroski, Brian English, Richard Leffler, Andrew Shirk Jan 2020

Tabletop Mechanical Tester, Jamie Dombroski, Brian English, Richard Leffler, Andrew Shirk

Williams Honors College, Honors Research Projects

The need for hands-on and face-to-face experiences in the engineering classroom is very great. The equations, principles, and concepts can all be learned, but without the visual and tactile application, these don’t always sink in or become concrete. A small-scale tensile test machine was designed, sourced, manufactured, and tested for the purpose of being applied in classroom settings to provide this experience to engineering students. Extensive research was performed concerning tensile machines on the market, the essential elements of which are the load cell, grips, crosshead, extensometer, motor, and frame. The raw materials for the frame were purchased and drawings …


Mini Baja Frame Analysis, Jacob Swanson Jan 2020

Mini Baja Frame Analysis, Jacob Swanson

Williams Honors College, Honors Research Projects

The purpose of our senior design project is to optimize the Baja frame to reduce its weight and material cost while keeping the required rigidity. Through force analysis we will be able to determine if any rigidity is lost by removing a set of tubes (figure 1), along with the other forces seen by the frame. If it is found that the frame rigidity is still within the determined factor of safety, 2, then we will be able to reduce the frame weight and the number of tubes that make up the frame. Along with force analysis, we will use …


Adaptive Multi-Fidelity Modeling For Efficient Design Exploration Under Uncertainty, Atticus J. Beachy Jan 2020

Adaptive Multi-Fidelity Modeling For Efficient Design Exploration Under Uncertainty, Atticus J. Beachy

Browse all Theses and Dissertations

This thesis work introduces a novel multi-fidelity modeling framework, which is designed to address the practical challenges encountered in Aerospace vehicle design when 1) multiple low-fidelity models exist, 2) each low-fidelity model may only be correlated with the high-fidelity model in part of the design domain, and 3) models may contain noise or uncertainty. The proposed approach approximates a high-fidelity model by consolidating multiple low-fidelity models using the localized Galerkin formulation. Also, two adaptive sampling methods are developed to efficiently construct an accurate model. The first acquisition formulation, expected effectiveness, searches for the global optimum and is useful for modeling …