Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Exact Controllability Of The Lazer-Mckenna Suspension Bridge Equation, Lanxuan Yu Dec 2014

Exact Controllability Of The Lazer-Mckenna Suspension Bridge Equation, Lanxuan Yu

UNLV Theses, Dissertations, Professional Papers, and Capstones

It is well known that suspension bridges may display certain oscillations under external aerodynamic forces. Since the collapse of the Tacoma Narrows suspension bridge in 1940, suspension bridge models have been studied by many researchers. Based upon the fundamental nonlinearity in suspension bridges that the stays connecting the supporting cables and the roadbed resist expansion, but do not resist compression, new models describing oscillations in suspension bridges have been developed by Lazer and McKenna [Lazer and McKenna (1990)]. Except for a paper by Leiva [Leiva (2005)], there have been very few work on controls of the Lazer-McKenna suspension bridge models …


Feedback Speed Control Of A Small Two-Stroke Internal Combustion Engine That Propels An Unmanned Aerial Vehicle, Paul D. Fjare Aug 2014

Feedback Speed Control Of A Small Two-Stroke Internal Combustion Engine That Propels An Unmanned Aerial Vehicle, Paul D. Fjare

UNLV Theses, Dissertations, Professional Papers, and Capstones

Unmanned aerial vehicles (UAV) require intelligent control of their power source. Small UAV are typically powered by electric motors or small two-stroke internal combustion (IC) engines. Small IC engines allow for longer flight times but are more difficult to control and cause significant ground noise. A hybrid operation that uses the engine at high altitudes and the electric motors at low altitudes is desired. This would allow for extended flight with acceptable ground noise levels. Since the engine can not be restarted in the air it must be able to remain at idle for an extended time without stalling. A …