Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Adaptive Control Of Micro Air Vehicles, Joshua Stephen Matthews Aug 2006

Adaptive Control Of Micro Air Vehicles, Joshua Stephen Matthews

Theses and Dissertations

Although PID controllers work well on Miniature Air Vehicles (MAVs), they require tuning for each MAV. Also, they quickly lose performance in the presence of actuator failures or changes in the MAV dynamics. Adaptive control algorithms that self tune to each MAV and compensate for changes in the MAV during flight are explored. However, because the autopilots on MAVs are small, many of the adaptive control algorithms like those that employ least squares estimation may take too much code space, memory, and/or computing power. In this thesis we develop several Lyapunov-based model reference adaptive control (MRAC) schemes that are both …


A Third-Order Differential Steering Robot And Trajectory Generation In The Presence Of Moving Obstacles, Vatana An Jan 2006

A Third-Order Differential Steering Robot And Trajectory Generation In The Presence Of Moving Obstacles, Vatana An

Electronic Theses and Dissertations

In this thesis, four robots will be used to implement a collision-free trajectory planning/replanning algorithm. The existence of a chained form transformation so that the robot's model can be control in canonical form will be analyzed and proved. A trajectory generation for obstacles avoidance will be derived, simulated, and implemented. A specific PC based control algorithm will be developed. Chapter two describes two wheels differential drive robot modeling and existence of controllable canonical chained form. Chapter 3 describes criterion for avoiding dynamic objects, a feasible collision-free trajectory parameterization, and solution to steering velocity. Chapter 4 describes robot implementation, pc wireless …


Performance Improvement Using Simple Pid Controller Tuning Formulae, Aidan O'Dwyer Jan 2006

Performance Improvement Using Simple Pid Controller Tuning Formulae, Aidan O'Dwyer

Conference papers

The proportional integral derivative (PID) controller is the most dominant form of automatic controller in industrial use today. With this technique, it is necessary to adjust the controller parameters according to the nature of the process. Thus, for effective control of a HVDC system, for example, specific values need to be chosen for the P, I and D parameters, which will be different for the values required to control, for example, an induction motor drive. This tailoring of controller to process is known as controller tuning. Controller tuning is easily and effectively performed using tuning rules (i.e. formulae for controller …


Reducing Energy Costs By Optimizing Controller Tuning, Aidan O'Dwyer Jan 2006

Reducing Energy Costs By Optimizing Controller Tuning, Aidan O'Dwyer

Conference papers

The proportional integral derivative (PID) controller is the most dominant form of automatic controller in industrial use today. With this technique, it is necessary to adjust the controller parameters according to the nature of the process. This tailoring of controller to process is known as controller tuning. Controller tuning is easily and effectively performed using tuning rules (i.e. formulae for controller tuning, based on process information). Such tuning rules allow the easy set up of controllers to achieve optimum performance at commissioning. Importantly, they allow ease of re-commissioning if the characteristics of the process change. The paper outlines the results …