Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Control

University of Tennessee, Knoxville

Electrical and Computer Engineering

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Data Center Power System Emulation And Gan-Based High-Efficiency Rectifier With Reactive Power Regulation, Jingjing Sun May 2022

Data Center Power System Emulation And Gan-Based High-Efficiency Rectifier With Reactive Power Regulation, Jingjing Sun

Doctoral Dissertations

Data centers are indispensable for today's computing and networking society, which has a considerable power consumption and significant impact on power system. Meanwhile, the average energy usage efficiency of data centers is still not high, leading to significant power loss and system cost.

In this dissertation, effective methods are proposed to investigate the data center load characteristics, improve data center power usage efficiency, and reduce the system cost.

First, a dynamic power model of a typical data center ac power system is proposed, which is complete and able to predict the data center's dynamic performance. Also, a converter-based data center …


Design, Control And Protection Of Modular Multilevel Converter (Mmc)-Based Multi-Terminal Hvdc System, Yalong Li Dec 2016

Design, Control And Protection Of Modular Multilevel Converter (Mmc)-Based Multi-Terminal Hvdc System, Yalong Li

Doctoral Dissertations

Even though today’s transmission grids are predominantly based on the high voltage alternating current (HVAC) scheme, interests on high voltage direct current (HVDC) are growing rapidly during the past decade, due to the increased penetration of remote renewable energy. Voltage source converter (VSC) type is preferred over the traditional line-commutated converter (LCC) for this application, due to the advantages like smaller station footprint and no need for strong interfacing ac grid. As the state-of-the-art VSC topology, modular multilevel converter (MMC) is mostly considered. Most renewable energy sources, such as wind and solar, is usually sparsely located. Multi-terminal HVDC (MTDC) provides …


Flatness-Based Control Methodologies To Improve Frequency Regulation In Power Systems With High Penetration Of Wind, Maryam Hassani Variani Dec 2014

Flatness-Based Control Methodologies To Improve Frequency Regulation In Power Systems With High Penetration Of Wind, Maryam Hassani Variani

Doctoral Dissertations

To allow for high penetration of distributed generation and alternative energy units, it is critical to minimize the complexity of generator controls and to minimize the need for close coordination across regions. We propose that existing controls be replaced by a two-tier structure of local control operating within a global context of situational awareness. Flatness as an extension of controllability for non-linear systems is a key to enabling planning and optimization at various levels of the grid in this structure. In this study, flatness-based control for: one, Automatic Generation Control (AGC) of a multi-machine system including conventional generators; and two, …


Modeling, Analysis, And Control Of A Mobile Robot For In Vivo Fluoroscopy Of Human Joints During Natural Movements, Matthew A. Young May 2014

Modeling, Analysis, And Control Of A Mobile Robot For In Vivo Fluoroscopy Of Human Joints During Natural Movements, Matthew A. Young

Doctoral Dissertations

In this dissertation, the modeling, analysis and control of a multi-degree of freedom (mdof) robotic fluoroscope was investigated. A prototype robotic fluoroscope exists, and consists of a 3 dof mobile platform with two 2 dof Cartesian manipulators mounted symmetrically on opposite sides of the platform. One Cartesian manipulator positions the x-ray generator and the other Cartesian manipulator positions the x-ray imaging device. The robotic fluoroscope is used to x-ray skeletal joints of interest of human subjects performing natural movement activities. In order to collect the data, the Cartesian manipulators must keep the x-ray generation and imaging devices accurately aligned while …


Optimal Control Of Energy Efficient Buildings, Cale David Nelson May 2014

Optimal Control Of Energy Efficient Buildings, Cale David Nelson

Masters Theses

The building sector consumes a large part of the energy used in the United States and is responsible for nearly 40% of greenhouse gas emissions. Therefore, it is economically and environmentally important to reduce the building energy consumption to realize massive energy savings. Commercial buildings are complex, multi-physics, and highly stochastic dynamic systems. Recent work has focused on integrating modern modeling, simulation, and control techniques to solving this challenging problem. The overall focus of this thesis is directed toward designing an energy efficient building by controlling room temperature. One approach is based on a distributed parameter model represented by a …