Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Concrete

University of Arkansas, Fayetteville

Transportation Engineering

Publication Year

Articles 1 - 6 of 6

Full-Text Articles in Engineering

An Investigation Of The Flexural Strength And Toughness Of Hybrid Plain And Fiber Reinforced Concrete For Pavement Applications, Wesley Keys Dec 2021

An Investigation Of The Flexural Strength And Toughness Of Hybrid Plain And Fiber Reinforced Concrete For Pavement Applications, Wesley Keys

Graduate Theses and Dissertations

For decades, many solutions have been evaluated to combat cracking in concrete pavements. The study presented in this paper evaluates and compares the flexural performance under a third point loading configuration of plain concrete (PC) beams, fully fiber reinforced concrete (FRC) beams, and hybrid PC and FRC beams, with a top PC and bottom FRC layer. The purpose of this hybrid approach was to provide FRC in only half the section, saving cost, while providing a PC surface layer that is easier to finish. All PC top layers were applied at an age of 7-days, considered a reasonable time for …


Mitigating Calcium Oxychloride Damage In Cementitious Paste And Concrete Utilizing Supplementary Cementitious Materials, Casey Jones Jul 2021

Mitigating Calcium Oxychloride Damage In Cementitious Paste And Concrete Utilizing Supplementary Cementitious Materials, Casey Jones

Graduate Theses and Dissertations

It is understood among engineers in the United States (U.S.) that improvement is needed throughout the transportation infrastructure. In the 2021 Infrastructure Report Card produced by the American Society of Civil Engineers, the roadways of this nation merit a D. This leaves room for improvement in order to provide durable pavements throughout this nation. Areas with significant winter weather may have exacerbated effects in decreased roadway longevity due to freezing/thawing cycles and the use of chemical deicers to mitigate gelid roadway conditions. Much research focuses on surface scaling and reinforcement corrosion using these materials; however, joint deterioration, due to chemical …


Comparison Of The Resistance Of Belitic Calcium Sulfoaluminate Cement And Portland Cement To Sulfate Attack And Sulfuric Acid, Rilye Dillard May 2021

Comparison Of The Resistance Of Belitic Calcium Sulfoaluminate Cement And Portland Cement To Sulfate Attack And Sulfuric Acid, Rilye Dillard

Graduate Theses and Dissertations

Microbially induced corrosion (MIC) is a fairly common concrete deterioration mechanism with many negative effects. MIC is a complex chemical and biological process that occurs in sewage systems and is nearly impossible to replicate in a laboratory setting. For this study, sulfate and sulfuric acid attack on concrete were studied to mimic two stages of the MIC process. The ASTM C1012, Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution and a modified ASTM C1012 accelerated method were used to compare the sulfate resistance of belitic calcium sulfoaluminate (BCSA) cement, portland cement (PC), and PC-fly …


An Investigation Into The Effects Of Fly Ash On Freeze-Thaw Durability Prediction, Yancy Schrader Dec 2020

An Investigation Into The Effects Of Fly Ash On Freeze-Thaw Durability Prediction, Yancy Schrader

Graduate Theses and Dissertations

Air is purposefully entrained into concrete primarily to improve resistance to freeze-thaw deterioration while saturated with water. Air entraining admixtures (AEAs) are chemical admixtures designed to entrain air into the concrete to provide adequate resistance to the effects of freezing and thawing. One of the challenges associated with air entrainment in concrete is the interaction of an AEA with supplementary cementitious materials present in the concrete, particularly fly ash. Fly ash is a by-product of the coal fired electrical generation industry, and often contains residual unburned carbon and other components that can increase the AEA demand of a particular concrete …


Evaluation Of Concrete Deck Curing Regimens Using Capillary Pressure Sensing System, Samuel Spann Dec 2019

Evaluation Of Concrete Deck Curing Regimens Using Capillary Pressure Sensing System, Samuel Spann

Graduate Theses and Dissertations

Early-age plastic shrinkage cracking is a common problem with the construction of concrete bridge decks due to the high surface area-to-volume ratio and exposure to potentially detrimental environmental effects. Curing regimens are utilized to mitigate cracking risk during the plastic stage of the concrete; the curing regimens evaluated for this study were wet burlap-polyethylene sheeting, two acrylic curing compounds, and one lithium compound. Capillary pressure in the water filled pores has been shown to correlate to the plastic shrinkage cracking risk of concrete. A new portable system has been developed to measure the capillary pressure that could potentially be used …


Measurement Of Transfer And Development Lengths Of 0.7 In. Strands On Pretensioned Concrete Elements, Canh Ngoc Dang May 2015

Measurement Of Transfer And Development Lengths Of 0.7 In. Strands On Pretensioned Concrete Elements, Canh Ngoc Dang

Graduate Theses and Dissertations

The implementation of 0.7 in. (17.8 mm), Grade 270 (1860), low-relaxation prestressing strands in construction is slow regardless of its advantages over the use of 0.6 in. (15.2 mm) and 0.5 in. (12.7 mm) strands. The limited research data and unavailable design guidelines partially account for the slow utilization. This study measured transfer and development length, and evaluated applicable strand spacing of 0.7 in. (17.8 mm) prestressing strands for 24 pretensioned concrete beams. Each beam contained one prestressing strand or two prestressing strands placed at spacing of 2.0 in. (51 mm). The beams were fabricated with high strength, conventional concrete …