Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Membrane Compatibility With Switchable Polarity Draw Solutions For Use In Forward Osmosis Applications, Benjamin Joseph Coscia May 2014

Membrane Compatibility With Switchable Polarity Draw Solutions For Use In Forward Osmosis Applications, Benjamin Joseph Coscia

Honors Scholar Theses

Water scarcity is problem being faced worldwide and present in every continent. Close to one-fifth of the world’s population has difficulty acquiring safe water, and the problem is worsening as populations continue to grow in poorer countries. As the availability of unimpaired freshwater sources dwindle, water sources, such as the oceans and saline ground waters, must be tapped. However, desalination technologies are very expensive due to a high energy requirement. Forward osmosis (FO) is a process which may be able to replace or become integrated with existing desalination technologies like reverse osmosis. FO relies on an osmotic agent, or draw …


Application Of Electrospinning Technique In The Fabrication Of A Composite Electrode For Pemfc, Joshua Sightler, Eli Mcpherson, William A. Rigdon, Xinyu Huang Jan 2012

Application Of Electrospinning Technique In The Fabrication Of A Composite Electrode For Pemfc, Joshua Sightler, Eli Mcpherson, William A. Rigdon, Xinyu Huang

Faculty Publications

The Pt/C catalysts were mixed with carbon nanotube (CNT), Nafion™ dispersion and a fiber former, polymer poly-acrylic acid (PAA), to form an ink. The ink was deposited onto aluminum foil attached to a rotating collector via an electrospinning process. The ink composition, mixing procedure, and the E-spin parameters were studied for producing a uniform nanofiber mat on the aluminum substrate. The fiber-mat containing active catalyst ingredients was heat treated and decal transferred onto a Nafion membrane to form a membrane electrode assembly (MEA).


Inhomogeneous Degradation Of Polymer Electrolyte Membrane In Pem Fuel Cells, Xinyu Huang, Wonseok Yoon Jan 2009

Inhomogeneous Degradation Of Polymer Electrolyte Membrane In Pem Fuel Cells, Xinyu Huang, Wonseok Yoon

Faculty Publications

Membrane durability is one of the technical barriers for the commercialization of polymer electrolyte membrane (PEM) fuel cells. Membrane embrittlement (a form of mechanical weakening) can lead to the frequently observed “sudden death” behavior of PEM fuel cells. It is the objective of this study to explore the fundamental mechanisms of the mechanical weakening of perfluorosulfonic acid (PFSA) based electrolyte membranes during the accelerated degradation test.